1
|
Gong L, Zhang L, Zhang H, Nie F, Liu Z, Liu X, Fang M, Yang W, Zhang Y, Zhang G, Guo Z, Zhang H. Haplotype-resolved genome assembly and genome-wide association study identifies the candidate gene closely related to sugar content and tuber yield in Solanum tuberosum. HORTICULTURE RESEARCH 2025; 12:uhaf075. [PMID: 40303439 PMCID: PMC12038253 DOI: 10.1093/hr/uhaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
As an important noncereal food crop grown worldwide, the genetic improvement of potato in tuber yield and quality is largely constrained due to the lacking of a high-quality reference genome and understanding of the regulatory mechanism underlying the formation of superior alleles. Here, a chromosome-scale haplotype-resolved genome assembled from an anther-cultured progeny of 'Ningshu 15', a tetraploid variety featured by its high starch content and drought resistance was presented. The assembled genome size was 1.653 Gb, with a contig N50 of approximately 1.4 Mb and a scaffold N50 of 61 Mb. The long terminal repeat assembly index score of the two identified haplotypes of 'Ningshu 15' was 11.62 and 11.94, respectively. Comparative genomic analysis revealed that positive selection occurred in gene families related to starch, sucrose, fructose and mannose metabolism, and carotenoid biosynthesis. Further genome-wide association study in 141 accessions identified a total number of 53 quantitative trait loci related to fructose, glucose, and sucrose content. Among them, a tonoplast sugar transporter encoding gene, StTST2, closely associated with glucose content was identified. Constitutive expression of StTST2 in potato and Arabidopsis increased the photosynthetic rate, chlorophyll and sugar content, biomass tuber and seed production in transgenic plants. In addition, co-immunoprecipitation assays demonstrated that StTST2 directly interacted with SUT2. Our study provides a high-quality genome assembly and new genetic locus of potato for molecular breeding.
Collapse
Affiliation(s)
- Lei Gong
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Li Zhang
- Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Haiwen Zhang
- Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan District, Weifang, 261325 Shandong Province, China
| | - Fengjie Nie
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Zhenning Liu
- College of Agriculture and Forestry Science, Linyi University, Middle Section of Shuangling Road, Linyi, 276000 Shandong Province, China
| | - Xuan Liu
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Miaoquan Fang
- Huazhi Biotechnology Co. Ltd, 618 Heping Road, Furong District, Changsha, 410016 Hunan, China
| | - Wenjing Yang
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Yu Zhang
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Guohui Zhang
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Zhiqian Guo
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Hongxia Zhang
- College of Agriculture and Forestry Science, Linyi University, Middle Section of Shuangling Road, Linyi, 276000 Shandong Province, China
| |
Collapse
|
2
|
Sturaro M. Carotenoids in Potato Tubers: A Bright Yellow Future Ahead. PLANTS (BASEL, SWITZERLAND) 2025; 14:272. [PMID: 39861622 PMCID: PMC11768161 DOI: 10.3390/plants14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Carotenoids, the bright yellow, orange, and red pigments of many fruits and vegetables, are essential components of the human diet as bioactive compounds not synthesized in animals. As a staple crop potato has the potential to deliver substantial amounts of these nutraceuticals despite their lower concentration in tubers compared to edible organs of other plant species. Even small gains in tuber carotenoid levels could have a significant impact on the nutritional value of potatoes. This review will focus on the current status and future perspectives of carotenoid biofortification in potato with conventional breeding and biotechnological approaches. The high biodiversity of tuber carotenoid levels and composition is presented, with an emphasis on the under-exploited native germplasm that represents a wide reservoir of useful genetic variants to breed carotenoid-rich varieties. The following section describes the structural genes involved in carotenoid metabolism and storage known to have a major impact on carotenoid accumulation in potato, together with the strategies that harnessed their expression changes to increase tuber carotenoid content. Finally, the little information available on the regulation of carotenoid metabolism and the desirable future advances in potato carotenoid biofortification are discussed.
Collapse
Affiliation(s)
- Monica Sturaro
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, via Stezzano 24, 24126 Bergamo, Italy
| |
Collapse
|
3
|
Zhao L, Li Z, Jiang S, Xia C, Deng K, Liu B, Wang Z, Liu Q, He M, Zou M, Xia Z. The Telomere-to-Telomere Genome of Jaboticaba Reveals the Genetic Basis of Fruit Color and Citric Acid Content. Int J Mol Sci 2024; 25:11951. [PMID: 39596019 PMCID: PMC11593881 DOI: 10.3390/ijms252211951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Jaboticaba is a typical tropical plant that blossoms and bears fruit on the tree trunks and branches. The fruits resemble grapes in appearance and texture and are also known as "treegrapes". Currently, research on the genomics of jaboticaba is lacking. In this study, we constructed an integrated, telomere-to-telomere (T2T) gap-free reference genome and two nearly complete haploid genomes, thereby providing a high-quality genomic resource. Furthermore, we unveiled the evolutionary history of several species within the Myrtaceae family, highlighting significant expansions in metabolic pathways such as the citric acid cycle, glycolysis/gluconeogenesis, and phenylpropanoid biosynthesis throughout their evolutionary process. Transcriptome analysis of jaboticaba fruits of different colors revealed that the development of fruit skin color in jaboticaba is associated with the phenylpropanoid and flavonoid biosynthesis pathways, with the flavanone 3-hydroxylase (F3H) gene potentially regulating fruit skin color. Additionally, by constructing the regulatory pathway of the citric acid cycle, we found that low citric acid content is correlated with high expression levels of genes such as thiamin diphosphate (ThDP) and low expression of phosphoenolpyruvate carboxykinase (PEPCK), indicating that PEPCK positively regulates citric acid content. These T2T genomic resources will accelerate jaboticaba pepper genetic improvement and help to understand jaboticaba genome evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Meiling Zou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| | - Zhiqiang Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| |
Collapse
|
4
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
5
|
Li L, Zhu T, Wen L, Zhang T, Ren M. Biofortification of potato nutrition. J Adv Res 2024:S2090-1232(24)00487-9. [PMID: 39486784 DOI: 10.1016/j.jare.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is the fourth most important food crop after rice, wheat and maize in the world with the potential to feed the world's population, and potato is a major staple food in many countries. Currently, potato is grown in more than 100 countries and is consumed by more than 1 billion people worldwide, and the global annual output exceeds 300 million tons. With the rapid increase in the global population, potato will play a key role in food supply. These aspects have driven scientists to genetically engineer potato for yield and nutrition improvement. AIM OF REVIEW Potato is an excellent source of carbohydrates, rich in vitamins, phenols and minerals. At present, the nutritional fortification of potato has made remarkable progress, and the biomass and nutrient compositions of potato have been significantly improved through agronomic operation and genetic improvement. This review aims to summarize recent advances in the nutritional fortification of potato protein, lipid and vitamin, and provides new insights for future potato research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively summarizes the biofortification of potato five nutrients from protein, lipid, starch, vitamin to mineral. Meanwhile, we also discuss the multilayered insights in the prospects of edible potato fruit, vaccines and high-value products synthesis, and diploid potato seeds reproduction.
Collapse
Affiliation(s)
- Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Lina Wen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
| | - Tanran Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Dong J, Li J, Zuo Y, Wang J, Chen Y, Tu W, Wang H, Li C, Shan Y, Wang Y, Song B, Cai X. Haplotype-resolved genome and mapping of freezing tolerance in the wild potato Solanum commersonii. HORTICULTURE RESEARCH 2024; 11:uhae181. [PMID: 39247882 PMCID: PMC11374536 DOI: 10.1093/hr/uhae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Solanum commersonii (2n = 2x = 24, 1EBN, Endosperm Balance Number), native to the southern regions of Brazil, Uruguay, and northeastern Argentina, is the first wild potato germplasm collected by botanists and exhibits a remarkable array of traits related to disease resistance and stress tolerance. In this study, we present a high-quality haplotype-resolved genome of S. commersonii. The two identified haplotypes demonstrate chromosome sizes of 706.48 and 711.55 Mb, respectively, with corresponding chromosome anchoring rates of 94.2 and 96.9%. Additionally, the contig N50 lengths are documented at 50.87 and 45.16 Mb. The gene annotation outcomes indicate that the haplotypes encompasses a gene count of 39 799 and 40 078, respectively. The genome contiguity, completeness, and accuracy assessments collectively indicate that the current assembly has produced a high-quality genome of S. commersonii. Evolutionary analysis revealed significant positive selection acting on certain disease resistance genes, stress response genes, and environmentally adaptive genes during the evolutionary process of S. commersonii. These genes may be related to the formation of diverse and superior germplasm resources in the wild potato species S. commersonii. Furthermore, we utilized a hybrid population of S. commersonii and S. verrucosum to conduct the mapping of potato freezing tolerance genes. By combining BSA-seq analysis with traditional QTL mapping, we successfully mapped the potato freezing tolerance genes to a specific region on Chr07, spanning 1.25 Mb, with a phenotypic contribution rate of 18.81%. In short, current research provides a haplotype-resolved reference genome of the diploid wild potato species S. commersonii and establishes a foundation for further cloning and unraveling the mechanisms underlying cold tolerance in potatoes.
Collapse
Affiliation(s)
- Jianke Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtao Zuo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Haibo Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Chenxi Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Yacheng Shan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Dong QJ, Xu XY, Fan CX, Xiao JP. Transcriptome and metabolome analyses reveal chlorogenic acid accumulation in pigmented potatoes at different altitudes. Genomics 2024; 116:110883. [PMID: 38857813 DOI: 10.1016/j.ygeno.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Pigmented potato tubers are abundant in chlorogenic acids (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzed the transcriptome and metabolome of pigmented potato Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. CGA contents in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGAs were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that the structural genes of phenylalanine deaminase (PAL), coumarate-3 hydroxylase (C3H), cinnamic acid 4-hydroxylase (C4H) and the transcription factors of MYB and bHLH co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in pigmented potato at different altitudes.
Collapse
Affiliation(s)
- Qiu-Ju Dong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Xiao-Yu Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Cai-Xia Fan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China.
| |
Collapse
|
8
|
Khatun MS, Islam MSU, Shing P, Zohra FT, Rashid SB, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of FORMIN gene family in potato (Solanum tuberosum L.) and their expression profiles in response to drought stress condition. PLoS One 2024; 19:e0309353. [PMID: 39186738 PMCID: PMC11346945 DOI: 10.1371/journal.pone.0309353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
Formin proteins, characterized by the FH2 domain, are critical in regulating actin-driven cellular processes and cytoskeletal dynamics during abiotic stress. However, no genome-wide analysis of the formin gene family has yet to be conducted in the economically significant plant potato (Solanum tuberosum L.). In this study, 26 formin genes were identified and characterized in the potato genome (named as StFH), each containing the typical FH2 domain and distributed across the ten chromosomes. The StFH was categorized into seven subgroups (A-G) and the gene structure and motif analysis demonstrated higher structural similarities within the subgroups. Besides, the StFH exhibited ancestry and functional similarities with Arabidopsis. The Ka/Ks ratio indicated that StFH gene pairs were evolving through purifying selection, with five gene pairs exhibiting segmental duplications and two pairs exhibiting tandem duplications. Subcellular localization analysis suggested that most of the StFH genes were located in the chloroplast and plasma membrane. Moreover, 54 cis-acting regulatory elements (CAREs) were identified in the promoter regions, some of which were associated with stress responses. According to gene ontology analysis, the majority of the StFH genes were involved in biological processes, with 63 out of 74 GO terms affecting actin polymerization. Six major transcription factor families, including bZIP, C2H2, ERF, GATA, LBD, NAC, and HSF, were identified that were involved in the regulation of StFH genes in various abiotic stresses, including drought. Further, the 60 unique microRNAs targeted 24 StFH by regulating gene expression in response to drought stress were identified. The expression of StFH genes in 14 different tissues, particularly in drought-responsive tissues such as root, stem, shoot apex, and leaf, underscores their significance in managing drought stress. RNA-seq analysis of the drought-resistant Qingshu No. 9 variety revealed the potential role of up-regulated genes, including StFH2, StFH10, StFH19, and StFH25, in alleviating drought stress. Overall, these findings provide crucial insights into the response to drought stress in potatoes and can be utilized in breeding programs to develop potato cultivars with enhanced drought-tolerant traits.
Collapse
Affiliation(s)
- Mst. Sumaiya Khatun
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pollob Shing
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shuraya Beente Rashid
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
9
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Sharma SK, McLean K, Hedley PE, Dale F, Daniels S, Bryan GJ. Genotyping-by-sequencing targets genic regions and improves resolution of genome-wide association studies in autotetraploid potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:180. [PMID: 38980417 PMCID: PMC11233353 DOI: 10.1007/s00122-024-04651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 07/10/2024]
Abstract
KEY MESSAGE De novo genotyping in potato using methylation-sensitive GBS discovers SNPs largely confined to genic or gene-associated regions and displays enhanced effectiveness in estimating LD decay rates, population structure and detecting GWAS associations over 'fixed' SNP genotyping platform. Study also reports the genetic architectures including robust sequence-tagged marker-trait associations for sixteen important potato traits potentially carrying higher transferability across a wider range of germplasm. This study deploys recent advancements in polyploid analytical approaches to perform complex trait analyses in cultivated tetraploid potato. The study employs a 'fixed' SNP Infinium array platform and a 'flexible and open' genome complexity reduction-based sequencing method (GBS, genotyping-by-sequencing) to perform genome-wide association studies (GWAS) for several key potato traits including the assessment of population structure and linkage disequilibrium (LD) in the studied population. GBS SNPs discovered here were largely confined (~ 90%) to genic or gene-associated regions of the genome demonstrating the utility of using a methylation-sensitive restriction enzyme (PstI) for library construction. As compared to Infinium array SNPs, GBS SNPs displayed enhanced effectiveness in estimating LD decay rates and discriminating population subgroups. GWAS using a combined set of 30,363 SNPs identified 189 unique QTL marker-trait associations (QTL-MTAs) covering all studied traits. The majority of the QTL-MTAs were from GBS SNPs potentially illustrating the effectiveness of marker-dense de novo genotyping platforms in overcoming ascertainment bias and providing a more accurate correction for different levels of relatedness in GWAS models. GWAS also detected QTL 'hotspots' for several traits at previously known as well as newly identified genomic locations. Due to the current study exploiting genome-wide genotyping and de novo SNP discovery simultaneously on a large tetraploid panel representing a greater diversity of the cultivated potato gene pool, the reported sequence-tagged MTAs are likely to have higher transferability across a wider range of potato germplasm and increased utility for expediting genomics-assisted breeding for the several complex traits studied.
Collapse
Affiliation(s)
- Sanjeev Kumar Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Karen McLean
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Finlay Dale
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
11
|
Ma Y, Li M, Wang S, Deng K, Zhao L, Luo J, Wang W, Wang F, Wang J. Transcriptomics Identifies Differentially Expressed Genes Inducing Tuber Formation in Early- and Late-Maturing Potatoes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1879. [PMID: 38999719 PMCID: PMC11243988 DOI: 10.3390/plants13131879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
The timing of potato tuberization is affected by potato ripeness, environmental factors, and polygene regulation. The accurate control of the transition to tuberization has both scientific and practical production value, but the key factors regulating this transition remain unclear. This study grafted an early-maturing potato variety (Favorita) scion to the late-maturing Qingshu 9 variety and demonstrated that a heterologous early-maturing scion can induce early potato formation on a late-maturing rootstock. The transcriptome of functional leaves and stolons of grafted plants was comprehensively analyzed and 593 differentially expressed genes (DEGs) were identified, including 38 transcription factors. Based on gene molecular function analysis and previous reports, we propose that PIF5, bHLH93, CBF3, ERF109, TCP19, and YABBY1 are the key DEGs that induce tuber formation in early- and late-maturing potatoes. The YABBY1 gene was subjected to functional verification. The leaf area of StYABBY1-overexpressing plants was smaller than the wild type and no potato tubercles were formed, while an RNA interference plant line showed no change in leaf area and formed tubers, indicating that StYABBY1 has a role in leaf size regulation and tuber formation.
Collapse
Affiliation(s)
- Yongzhen Ma
- Qinghai University, Xining 810016, China; (Y.M.); (K.D.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Laboratory for Research and Utilization of Qinghai Tibet Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology Ministry of Education, Qinghai University, Xining 810016, China
- Qinghai Provincial Key Laboratory of Potato Breeding, Ministry of Education, Engineering Research Center of Potato in Northwest Region, Qinghai University, Xining 810016, China
| | - Mengtao Li
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (M.L.); (S.W.); (J.L.); (W.W.)
| | - Shujuan Wang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (M.L.); (S.W.); (J.L.); (W.W.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China;
| | - Ke Deng
- Qinghai University, Xining 810016, China; (Y.M.); (K.D.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Laboratory for Research and Utilization of Qinghai Tibet Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology Ministry of Education, Qinghai University, Xining 810016, China
- Qinghai Provincial Key Laboratory of Potato Breeding, Ministry of Education, Engineering Research Center of Potato in Northwest Region, Qinghai University, Xining 810016, China
| | - Long Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China;
| | - Jia Luo
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (M.L.); (S.W.); (J.L.); (W.W.)
| | - Wenquan Wang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (M.L.); (S.W.); (J.L.); (W.W.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China;
| | - Fang Wang
- Qinghai University, Xining 810016, China; (Y.M.); (K.D.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Laboratory for Research and Utilization of Qinghai Tibet Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology Ministry of Education, Qinghai University, Xining 810016, China
- Qinghai Provincial Key Laboratory of Potato Breeding, Ministry of Education, Engineering Research Center of Potato in Northwest Region, Qinghai University, Xining 810016, China
| | - Jian Wang
- Qinghai University, Xining 810016, China; (Y.M.); (K.D.)
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Laboratory for Research and Utilization of Qinghai Tibet Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology Ministry of Education, Qinghai University, Xining 810016, China
- Qinghai Provincial Key Laboratory of Potato Breeding, Ministry of Education, Engineering Research Center of Potato in Northwest Region, Qinghai University, Xining 810016, China
| |
Collapse
|
12
|
Liu Y, Zhou Y, Cheng F, Zhou R, Yang Y, Wang Y, Zhang X, Soltis DE, Xiao N, Quan Z, Li J. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:73-89. [PMID: 38112590 DOI: 10.1111/tpj.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Yi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Yanchang Wang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Zhanjun Quan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| |
Collapse
|
13
|
Zhang X, Bai L, Li M, Li Y, Hu R, Guo H. Pollen transcriptomic analysis provided insights into understanding the molecular mechanisms underlying grafting-induced improvement in potato fertility. FRONTIERS IN PLANT SCIENCE 2024; 15:1338106. [PMID: 38606064 PMCID: PMC11007164 DOI: 10.3389/fpls.2024.1338106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 04/13/2024]
Abstract
Introduction Heterologous grafting has been proven to be a valid approach to improving potato fertility, especially when grafting potatoes with other Solanaceae family plants. However, the mechanisms underlying grafting-induced improvement in potato fertility are still unknown. Methods In this study, a poor-fertility potato cultivar "Qingshu No. 9" (Q9) was grafted with a tomato cultivar "Zhongyan988" (ZY988) to study the effects of heterologous grafting in the former. The tuber yield was controlled by different grafting and cultivation approaches, and the correlation between tuber yield and pollen vigor was studied. Comparative transcriptomic analysis of the potential mechanisms of pollen in potato scion fertility changes. Result Grafting with the tomato rootstock effectively promoted the flower and fruit formation in the scion potato and improved its pollen viability by 15%-20%. In addition, a significant negative correlation was observed between the potato tuber yield and pollen viability, suggesting a potential impact on the metabolic regulatory network related to tuber formation. From the comparative transcriptomic analysis between the pollens from Q9 self-grafted plants and Q9-tomato grafting scion, 513 differentially expressed genes (DEGs) were identified. These DEGs were found to be related to gametophyte and pollen development, carbohydrate metabolism, and protein processing. Thus, these DEGs might be involved in improved fertility after reduced tuberization in plants subjected to heterologous grafting. Discussion Potato/tomato heterologous grafting significantly improved the pollen viability of scion potatoes and was associated with the absence of potato tubers. Heterologous grafting promotes the transcription of genes related to protein processing, carbohydrate metabolism, and pollen development in pollen cells, resulting in the production of fertile pollen. Our results provided initial clues to understanding the improvement of potato fertility using the heterologous grafting method, which might be a useful tool in assisted potato breeding.
Collapse
Affiliation(s)
- Xing Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lei Bai
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Maoxing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youhan Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ronghai Hu
- Technical Department, Yunnan BengLong Potato Planting Co., Ltd, Kunming, Yunnan, China
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming, Yunnan, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
14
|
Zhou Z, Liu F, Xu Y, Hu W. Genetic Diversity Analysis and Core Germplasm Construction of Rubus chingii Hu. PLANTS (BASEL, SWITZERLAND) 2024; 13:618. [PMID: 38475465 DOI: 10.3390/plants13050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
Rubus chingii Hu is the only species that is used for both edible and medicinal purposes among the 194 species of the genus Rubus in China. It is well known for its sweet and sour fresh fruits that are rich in vitamins and for its dried immature fruits that are used to treat kidney-related ailments. This study aims to evaluate genetic diversity and population structure and build a core germplasm repository of 132 R. chingii accessions from the provinces of Jiangxi and Fujian, using Hyper-seq-derived single-nucleotide polymorphism (SNP) markers. This is the first genetic study of R. chingii based on SNP molecular markers, and a total of 1,303,850 SNPs and 433,159 insertions/deletions (InDels) were identified. Low values for observed heterozygosity, nucleotide diversity (Pi) and fixation indexes (Fis) indicated low genetic diversity within populations, and an analysis of molecular variance (AMOVA) showed that 37.4% and 62.6% of the variations were found between populations and within samples, respectively. Four main clusters were identified by means of neighbor-joining (NJ) trees, the ADMIXTURE program and principal component analysis (PCA). Based on the genetic diversity, we finally constructed 38 representative core collections, representing 50% of the total core germplasm samples and 95.3% of the genotypes. In summary, the results of our study can provide valuable information on the genetic structure of R. chingii germplasm resources, which is helpful for further explorations of potential high-quality genes and for formulating future breeding and conservation strategies.
Collapse
Affiliation(s)
- Ziwei Zhou
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yanqin Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Weiming Hu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
15
|
Zarka KA, Jagd LM, Douches DS. T-DNA characterization of genetically modified 3-R-gene late blight-resistant potato events with a novel procedure utilizing the Samplix Xdrop ® enrichment technology. FRONTIERS IN PLANT SCIENCE 2024; 15:1330429. [PMID: 38419775 PMCID: PMC10900525 DOI: 10.3389/fpls.2024.1330429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Before the commercialization of genetically modified crops, the events carrying the novel DNA must be thoroughly evaluated for agronomic, nutritional, and molecular characteristics. Over the years, polymerase chain reaction-based methods, Southern blot, and short-read sequencing techniques have been utilized for collecting molecular characterization data. Multiple genomic applications are necessary to determine the insert location, flanking sequence analysis, characterization of the inserted DNA, and determination of any interruption of native genes. These techniques are time-consuming and labor-intensive, making it difficult to characterize multiple events. Current advances in sequencing technologies are enabling whole-genomic sequencing of modified crops to obtain full molecular characterization. However, in polyploids, such as the tetraploid potato, it is a challenge to obtain whole-genomic sequencing coverage that meets the regulatory approval of the genetic modification. Here we describe an alternative to labor-intensive applications with a novel procedure using Samplix Xdrop® enrichment technology and next-generation Nanopore sequencing technology to more efficiently characterize the T-DNA insertions of four genetically modified potato events developed by the Feed the Future Global Biotech Potato Partnership: DIA_MSU_UB015, DIA_MSU_UB255, GRA_MSU_UG234, and GRA_MSU_UG265 (derived from regionally important varieties Diamant and Granola). Using the Xdrop® /Nanopore technique, we obtained a very high sequence read coverage within the T-DNA and junction regions. In three of the four events, we were able to use the data to confirm single T-DNA insertions, identify insert locations, identify flanking sequences, and characterize the inserted T-DNA. We further used the characterization data to identify native gene interruption and confirm the stability of the T-DNA across clonal cycles. These results demonstrate the functionality of using the Xdrop® /Nanopore technique for T-DNA characterization. This research will contribute to meeting regulatory safety and regulatory approval requirements for commercialization with small shareholder farmers in target countries within our partnership.
Collapse
Affiliation(s)
- Kelly A. Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Song H, Zhang Q, Hu H. polyGBLUP: a modified genomic best linear unbiased prediction improved the genomic prediction efficiency for autopolyploid species. Brief Bioinform 2024; 25:bbae106. [PMID: 38517695 PMCID: PMC10959164 DOI: 10.1093/bib/bbae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Given the universality of autopolyploid species in nature, it is crucial to develop genomic selection methods that consider different allele dosages for autopolyploid breeding. However, no method has been developed to deal with autopolyploid data regardless of the ploidy level. In this study, we developed a modified genomic best linear unbiased prediction (GBLUP) model (polyGBLUP) through constructing additive and dominant genomic relationship matrices based on different allele dosages. polyGBLUP could carry out genomic prediction for autopolyploid species regardless of the ploidy level. Through comprehensive simulations and analysis of real data of autotetraploid blueberry and guinea grass and autohexaploid sweet potato, the results showed that polyGBLUP achieved higher prediction accuracy than GBLUP and its superiority was more obvious when the ploidy level of autopolyploids is high. Furthermore, when the dominant effect was added to polyGBLUP (polyGDBLUP), the greater the dominance degree, the more obvious the advantages of polyGDBLUP over the diploid models in terms of prediction accuracy, bias, mean squared error and mean absolute error. For real data, the superiority of polyGBLUP over GBLUP appeared in blueberry and sweet potato populations and a part of the traits in guinea grass population due to the high correlation coefficients between diploid and polyploidy genomic relationship matrices. In addition, polyGDBLUP did not produce higher prediction accuracy than polyGBLUP for most traits of real data as dominant genetic variance was not captured for these traits. Our study will be a significant promising method for genomic prediction of autopolyploid species.
Collapse
Affiliation(s)
- Hailiang Song
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences & Beijing Key Laboratory of Fisheries Biotechnology, Beijing 100068, China
- Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou, 311799, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271001, China
| | - Hongxia Hu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences & Beijing Key Laboratory of Fisheries Biotechnology, Beijing 100068, China
- Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou, 311799, China
| |
Collapse
|
17
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
18
|
He J, Tian D, Li X, Wang X, Wang T, Wang Z, Zang H, He X, Zhang T, Yun Q, Zhang R, Jiang J, Jia S, Zhang Y. A chromosome-level genome assembly for Onobrychis viciifolia reveals gene copy number gain underlying enhanced proanthocyanidin biosynthesis. Commun Biol 2024; 7:19. [PMID: 38182881 PMCID: PMC10770414 DOI: 10.1038/s42003-023-05754-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Sainfoin (Onobrychis viciifolia), which belongs to subfamily Papilionoideae of Leguminosae, is a vital perennial forage known as "holy hay" due to its high contents of crude proteins and proanthocyanidins (PAs, also called condensed tannins) that have various pharmacological properties in animal feed, such as alleviating rumen tympanic disease in ruminants. In this study, we select an autotetraploid common sainfoin (2n = 4x = 28) and report its high-quality chromosome-level genome assembly with 28 pseudochromosomes and four haplotypes (~1950.14 Mb, contig N50 = 10.91 Mb). The copy numbers of genes involved in PA biosynthesis in sainfoin are significantly greater than those in four selected Fabales species, namely, autotetraploid Medicago sativa and three other diploid species, Lotus japonicus, Medicago truncatula, and Glycine max. Furthermore, gene expansion is confirmed to be the key contributor to the increased expression of these genes and subsequent PA enhancement in sainfoin. Transcriptomic analyses reveal that the expression of genes involved in the PA biosynthesis pathway is significantly increased in the lines with high PA content compared to the lines with medium and low PA content. The sainfoin genome assembly will improve our understanding of leguminous genome evolution and biosynthesis of secondary metabolites in sainfoin.
Collapse
Affiliation(s)
- Junyi He
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Danyang Tian
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xuemeng Wang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Tingting Wang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Ziyao Wang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Hui Zang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaofan He
- School of Grassland Science, Beijing Forestry University, 100083, Beijing, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, 100083, Beijing, China
| | - Quanzheng Yun
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261322, China
| | - Rengang Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261322, China
| | - Jishan Jiang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
19
|
Lyu ZY, Zhou XL, Wang SQ, Yang GM, Sun WG, Zhang JY, Zhang R, Shen SK. The first high-altitude autotetraploid haplotype-resolved genome assembled (Rhododendron nivale subsp. boreale) provides new insights into mountaintop adaptation. Gigascience 2024; 13:giae052. [PMID: 39110622 PMCID: PMC11304948 DOI: 10.1093/gigascience/giae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Rhododendron nivale subsp. boreale Philipson et M. N. Philipson is an alpine woody species with ornamental qualities that serve as the predominant species in mountainous scrub habitats found at an altitude of ∼4,200 m. As a high-altitude woody polyploid, this species may serve as a model to understand how plants adapt to alpine environments. Despite its ecological significance, the lack of genomic resources has hindered a comprehensive understanding of its evolutionary and adaptive characteristics in high-altitude mountainous environments. FINDINGS We sequenced and assembled the genome of R. nivale subsp. boreale, an assembly of the first subgenus Rhododendron and the first high-altitude woody flowering tetraploid, contributing an important genomic resource for alpine woody flora. The assembly included 52 pseudochromosomes (scaffold N50 = 42.93 Mb; BUSCO = 98.8%; QV = 45.51; S-AQI = 98.69), which belonged to 4 haplotypes, harboring 127,810 predicted protein-coding genes. Conjoint k-mer analysis, collinearity assessment, and phylogenetic investigation corroborated autotetraploid identity. Comparative genomic analysis revealed that R. nivale subsp. boreale originated as a neopolyploid of R. nivale and underwent 2 rounds of ancient polyploidy events. Transcriptional expression analysis showed that differences in expression between alleles were common and randomly distributed in the genome. We identified extended gene families and signatures of positive selection that are involved not only in adaptation to the mountaintop ecosystem (response to stress and developmental regulation) but also in autotetraploid reproduction (meiotic stabilization). Additionally, the expression levels of the (group VII ethylene response factor transcription factors) ERF VIIs were significantly higher than the mean global gene expression. We suspect that these changes have enabled the success of this species at high altitudes. CONCLUSIONS We assembled the first high-altitude autopolyploid genome and achieved chromosome-level assembly within the subgenus Rhododendron. In addition, a high-altitude adaptation strategy of R. nivale subsp. boreale was reasonably speculated. This study provides valuable data for the exploration of alpine mountaintop adaptations and the correlation between extreme environments and species polyploidization.
Collapse
Affiliation(s)
- Zhen-Yu Lyu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Xiong-Li Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Si-Qi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Gao-Ming Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Wen-Guang Sun
- School of Life Sciences, Yunnan Normal University, Kunming 650500 Yunnan, China
| | - Jie-Yu Zhang
- School of Life Sciences, Yunnan Normal University, Kunming 650500 Yunnan, China
| | - Rui Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Shi-Kang Shen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| |
Collapse
|
20
|
Lindqvist-Kreuze H, Bonierbale M, Grüneberg WJ, Mendes T, De Boeck B, Campos H. Potato and sweetpotato breeding at the international potato center: approaches, outcomes and the way forward. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:12. [PMID: 38112758 PMCID: PMC10730645 DOI: 10.1007/s00122-023-04515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Root and tuber crop breeding is at the front and center of CIP's science program, which seeks to develop and disseminate sustainable agri-food technologies, information and practices to serve objectives including poverty alleviation, income generation, food security and the sustainable use of natural resources. CIP was established in 1971 in Peru, which is part of potato's center of origin and diversity, with an initial mandate on potato and expanding to include sweetpotato in 1986. Potato and sweetpotato are among the top 10 most consumed food staples globally and provide some of the most affordable sources of energy and vital nutrients. Sweetpotato plays a key role in securing food for many households in Africa and South Asia, while potato is important worldwide. Both crops grow in a range of conditions with relatively few inputs and simple agronomic techniques. Potato is adapted to the cooler environments, while sweetpotato grows well in hot climates, and hence, the two crops complement each other. Germplasm enhancement (pre-breeding), the development of new varieties and building capacity for breeding and variety testing in changing climates with emphasis on adaptation, resistance, nutritional quality and resource-use efficiency are CIP's central activities with significant benefits to the poor. Investments in potato and sweetpotato breeding and allied disciplines at CIP have resulted in the release of many varieties some of which have had documented impact in the release countries. Partnership with diverse types of organizations has been key to the centers way of working toward improving livelihoods through crop production in the global South.
Collapse
Affiliation(s)
| | - Merideth Bonierbale
- International Potato Center, Lima 12, 1558, Apartado, Peru
- Calle Bolivia, 12 Manilva, 29690, Malaga, Spain
| | | | - Thiago Mendes
- International Potato Center, Lima 12, 1558, Apartado, Peru
| | - Bert De Boeck
- International Potato Center, Lima 12, 1558, Apartado, Peru
| | - Hugo Campos
- International Potato Center, Lima 12, 1558, Apartado, Peru
| |
Collapse
|
21
|
Apriyanto A, Compart J, Fettke J. Transcriptomic analysis of mesocarp tissue during fruit development of the oil palm revealed specific isozymes related to starch metabolism that control oil yield. FRONTIERS IN PLANT SCIENCE 2023; 14:1220237. [PMID: 37554560 PMCID: PMC10405827 DOI: 10.3389/fpls.2023.1220237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
The oil palm (Elaeis guineensis Jacq.) produces a large amount of oil from the fruit. However, increasing the oil production in this fruit is still challenging. A recent study has shown that starch metabolism is essential for oil synthesis in fruit-producing species. Therefore, the transcriptomic analysis by RNA-seq was performed to observe gene expression alteration related to starch metabolism genes throughout the maturity stages of oil palm fruit with different oil yields. Gene expression profiles were examined with three different oil yields group (low, medium, and high) at six fruit development phases (4, 8, 12, 16, 20, and 22 weeks after pollination). We successfully identified and analyzed differentially expressed genes in oil palm mesocarps during development. The results showed that the transcriptome profile for each developmental phase was unique. Sucrose flux to the mesocarp tissue, rapid starch turnover, and high glycolytic activity have been identified as critical factors for oil production in oil palms. For starch metabolism and the glycolytic pathway, we identified specific gene expressions of enzyme isoforms (isozymes) that correlated with oil production, which may determine the oil content. This study provides valuable information for creating new high-oil-yielding palm varieties via breeding programs or genome editing approaches.
Collapse
Affiliation(s)
- Ardha Apriyanto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- Research and Development, PT. Astra Agro Lestari Tbk, Jakarta Timur, Indonesia
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
22
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
23
|
Zhao L, Zou M, Deng K, Xia C, Jiang S, Zhang C, Ma Y, Dong X, He M, Na T, Wang J, Xia Z, Wang F. Insights into the genetic determination of tuber shape and eye depth in potato natural population based on autotetraploid potato genome. FRONTIERS IN PLANT SCIENCE 2023; 14:1080666. [PMID: 37056497 PMCID: PMC10086151 DOI: 10.3389/fpls.2023.1080666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Potato is one of the world's most important food crops, with a time-consuming breeding process. In this study, we performed a genome-wide association (GWAS) analysis of the two important traits of potato tuber shape and eye depth, using the tetraploid potato genome (2n=4x=48) as a reference. A total of 370 potatoes were divided into three subgroups based on the principal component analysis and evolutionary tree analysis. The genetic diversity within subgroups is low (5.18×10-5, 4.36×10-5 and 4.24×10-5). Genome-wide linkage disequilibrium (LD) analysis showed that their LD is about 60 Kb. GWAS analysis identified that 146 significant single nucleotide polymorphism (SNP) loci at Chr01A1:34.44-35.25 Mb and Chr02A1:28.35-28.54 Mb regions are significantly associated with potato tuber shape, and that three candidate genes that might be related to potato tuber traits, PLATZ transcription factor, UTP-glucose-1-phosphate uridylyltransferase and FAR1 DNA-binding domain, are in the association region of Chr02A1. GWAS analysis identified 53 significant SNP loci at Chr05A2: 49.644-50.146 Mb and Chr06A2: 25.866-26.384 Mb regions with robust associations with potato tuber eye depth. Hydrolase and methyltransferases are present in the association region of Chr05A2, and three CYPs are present in the association region of Chr06A2. Our findings suggested that these genes are closely associated with potato tuber shape and eye depth. Our study identified molecular markers and candidate genes for improving tetraploid potato tuber shape and eye depth and provided ideas and insights for tetraploid potato breeding.
Collapse
Affiliation(s)
- Long Zhao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Meiling Zou
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Ke Deng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Chengcai Xia
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Sirong Jiang
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Chenji Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yongzhen Ma
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Xiaorui Dong
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Miaohua He
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Tiancang Na
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology Ministry of Education, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Potato Breeding, Qinghai University, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology Ministry of Education, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Potato Breeding, Qinghai University, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining, China
| | - Zhiqiang Xia
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Fang Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology Ministry of Education, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Potato Breeding, Qinghai University, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining, China
| |
Collapse
|
24
|
Zhao L, Zou M, Jiang S, Dong X, Deng K, Na T, Wang J, Xia Z, Wang F. Insights into the Genetic Determination of the Autotetraploid Potato Plant Height. Genes (Basel) 2023; 14:507. [PMID: 36833433 PMCID: PMC9957462 DOI: 10.3390/genes14020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant height is an important characteristic, the modification of which can improve the ability of stress adaptation as well as the yield. In this study, genome-wide association analysis was performed for plant height traits in 370 potato cultivars using the tetraploid potato genome as a reference. A total of 92 significant single nucleotide polymorphism (SNP) loci for plant height were obtained, which were particularly significant in haplotypes A3 and A4 on chromosome 1 and A1, A2, and A4 on chromosome 5. Thirty-five candidate genes were identified that were mainly involved in the gibberellin and brassinolide signal transduction pathways, including the FAR1 gene, methyltransferase, ethylene response factor, and ubiquitin protein ligase. Among them, PIF3 and GID1a were only present on chromosome 1, with PIF3 in all four haplotypes and GID1a in haplotype A3. This could lead to more effective genetic loci for molecular marker-assisted selection breeding as well as more precise localization and cloning of genes for plant height traits in potatoes.
Collapse
Affiliation(s)
- Long Zhao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Meiling Zou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Sirong Jiang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Xiaorui Dong
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Ke Deng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Tiancang Na
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Zhiqiang Xia
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Fang Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
25
|
Gui S, Martinez-Rivas FJ, Wen W, Meng M, Yan J, Usadel B, Fernie AR. Going broad and deep: sequencing-driven insights into plant physiology, evolution, and crop domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:446-459. [PMID: 36534120 DOI: 10.1111/tpj.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Deep sequencing is a term that has become embedded in the plant genomic literature in recent years and with good reason. A torrent of (largely) high-quality genomic and transcriptomic data has been collected and most of this has been publicly released. Indeed, almost 1000 plant genomes have been reported (www.plabipd.de) and the 2000 Plant Transcriptomes Project has long been completed. The EarthBioGenome project will dwarf even these milestones. That said, massive progress in understanding plant physiology, evolution, and crop domestication has been made by sequencing broadly (across a species) as well as deeply (within a single individual). We will outline the current state of the art in genome and transcriptome sequencing before we briefly review the most visible of these broad approaches, namely genome-wide association and transcriptome-wide association studies, as well as the compilation of pangenomes. This will include both (i) the most commonly used methods reliant on single nucleotide polymorphisms and short InDels and (ii) more recent examples which consider structural variants. We will subsequently present case studies exemplifying how their application has brought insight into either plant physiology or evolution and crop domestication. Finally, we will provide conclusions and an outlook as to the perspective for the extension of such approaches to different species, tissues, and biological processes.
Collapse
Affiliation(s)
- Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minghui Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Björn Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Wilhelm Johnen Str, BioSc, 52428, Jülich, Germany
- Institute for Biological Data Science, CEPLAS, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
26
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
27
|
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:273. [PMID: 36678985 PMCID: PMC9862067 DOI: 10.3390/plants12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world's largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7-9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes-Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1-were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.
Collapse
Affiliation(s)
- Elena V. Rogozina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Alyona A. Gurina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda M. Zoteyeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | | | | | | | | | | | - Emil E. Khavkin
- Institute of Agricultural Biotechnology, Moscow 127550, Russia
| |
Collapse
|
28
|
Ye C, He Z, Peng J, Wang R, Wang X, Fu M, Zhang Y, Wang A, Liu Z, Jia G, Chen Y, Tian B. Genomic and genetic advances of oiltea-camellia ( Camellia oleifera). FRONTIERS IN PLANT SCIENCE 2023; 14:1101766. [PMID: 37077639 PMCID: PMC10106683 DOI: 10.3389/fpls.2023.1101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Oiltea-camellia (C. oleifera) is a widely cultivated woody oil crop in Southern China and Southeast Asia. The genome of oiltea-camellia was very complex and not well explored. Recently, genomes of three oiltea-camellia species were sequenced and assembled, multi-omic studies of oiltea-camellia were carried out and provided a better understanding of this important woody oil crop. In this review, we summarized the recent assembly of the reference genomes of oiltea-camellia, genes related to economic traits (flowering, photosynthesis, yield and oil component), disease resistance (anthracnose) and environmental stress tolerances (drought, cold, heat and nutrient deficiency). We also discussed future directions of integrating multiple omics for evaluating genetic resources and mining key genes of important traits, and the application of new molecular breeding and gene editing technologies to accelerate the breeding process of oiltea-camellia.
Collapse
Affiliation(s)
- Changrong Ye
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
| | - Zhilong He
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Jiayu Peng
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
| | - Rui Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Xiangnan Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Mengjiao Fu
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Ying Zhang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Ai Wang
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Zhixian Liu
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Gaofeng Jia
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| | - Bingchuan Tian
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| |
Collapse
|