1
|
Wang P, Liang B, Li Z, Dong H, Zhang L, Lu X. The Identification of a Single-Base Mutation in the Maize Dwarf 1 Gene Responsible for Reduced Plant Height in the Mutant 16N125. PLANTS (BASEL, SWITZERLAND) 2025; 14:1217. [PMID: 40284105 PMCID: PMC12030145 DOI: 10.3390/plants14081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Maize (Zea mays L.) is a globally vital crop for food, feed, and biofuel production, with plant height (PH) being a key agronomic trait that significantly influences yield, lodging resistance, and stress tolerance. This study identified a single-base mutation in the D1 (Dwarf 1) gene responsible for the dwarf phenotype in the maize mutant 16N125. Through genetic analysis and fine mapping, the candidate region was localized to chromosome 3, narrowing it down to an interval containing three genes. Sequencing revealed a non-synonymous mutation in D1, which encodes a gibberellin 3-beta-dioxygenase, leading to amino acid substitutions at positions 61 and 123. Genetic analysis of F2 populations confirmed that the mutation at position 61 was responsible for the dwarf trait. Furthermore, the mutation was detected in several Chinese inbred lines, indicating its potential role in dwarfing under specific conditions. These findings provide critical insights into the genetic mechanisms regulating maize plant height, offering valuable information for breeding programs focused on improving crop architecture and yield to address the challenges of global food security and climate change.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (P.W.)
| | - Bingbing Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (P.W.)
| | - Zhengjun Li
- Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Huaiyu Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (P.W.)
| | - Lixia Zhang
- Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Xiaochun Lu
- Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| |
Collapse
|
2
|
Wang Y, Zhang Y, Huang G, Wang J, Lv L, Zhao S, Lu X, Zhang M, Guo M, Zhang C, Men Q, Guo X, Zhao C. Association analysis of maize stem vascular bundle micro-characteristics with yield components based on micro-CT and identification of related genes. Sci Rep 2025; 15:13009. [PMID: 40234583 PMCID: PMC12000327 DOI: 10.1038/s41598-025-96518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
The distribution pattern of vascular bundles and microstructure characteristics significantly impact crop yield. Previous studies have primarily focused on investigating the micro-phenotypic characteristics and genetic regulation of individual internode, neglecting the exploration of the relationship between different internodes. This study, for the first time, comprehensively analyzed multi-scale phenotypic information of stem cross-sections, zones, and vascular bundles in three different internodes (basal third internode, ear internode and highest internode) of 268 inbred maize lines using Micro-computed tomography scanning. Key findings revealed that basal third internode and ear internode exhibited more stable microscopic characteristics than highest internode. Inbred lines with higher numbers of vascular bundle and well-developed inner zone in ear internode exhibited better yield characteristics, particularly in the kernel number per row. Genome-wide association analysis respectively identified 15, 1 and 1 putative candidate genes in basal third internode, ear internode and highest internode. These genes encode a variety of enzymes, such as oxidases, synthetases, ligase enzyme and protein kinases. Notably, Zm00001d042490 may be an important putative candidate gene for The number of vascular bundles in the periphery zone and corn grain traits. This study provides an important theoretical basis and genetic resources for accurately identifying different internode phenotypes of maize stalks, potentially advancing the selection of high-yielding, high-quality maize varieties.
Collapse
Affiliation(s)
- Yanru Wang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Guanmin Huang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lujia Lv
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuaihao Zhao
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Minkun Guo
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changyu Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingmei Men
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Chunjiang Zhao
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
3
|
Liu R, Hu C, Gao D, Li M, Yuan X, Chen L, Shu Q, Wang Z, Yang X, Dai Z, Yu H, Yang F, Zheng A, Lv M, Garg V, Jiao C, Zhang H, Hou W, Teng C, Zhou X, Du C, Xiang C, Xu D, Tang Y, Chitikineni A, Duan Y, Maalouf F, Agrawal SK, Wei L, Zhao N, Barmukh R, Li X, Wang D, Ding H, Liu Y, Chen X, Varshney RK, He Y, Zong X, Yang T. A special short-wing petal faba genome and genetic dissection of floral and yield-related traits accelerate breeding and improvement of faba bean. Genome Biol 2025; 26:62. [PMID: 40098156 PMCID: PMC11916958 DOI: 10.1186/s13059-025-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND A comprehensive study of the genome and genetics of superior germplasms is fundamental for crop improvement. As a widely adapted protein crop with high yield potential, the improvement in breeding and development of the seeds industry of faba bean have been greatly hindered by its giant genome size and high outcrossing rate. RESULTS To fully explore the genomic diversity and genetic basis of important agronomic traits, we first generate a de novo genome assembly and perform annotation of a special short-wing petal faba bean germplasm (VF8137) exhibiting a low outcrossing rate. Comparative genome and pan-genome analyses reveal the genome evolution characteristics and unique pan-genes among the three different faba bean genomes. In addition, the genome diversity of 558 accessions of faba bean germplasm reveals three distinct genetic groups and remarkable genetic differences between the southern and northern germplasms. Genome-wide association analysis identifies several candidate genes associated with adaptation- and yield-related traits. We also identify one candidate gene related to short-wing petals by combining quantitative trait locus mapping and bulked segregant analysis. We further elucidate its function through multiple lines of evidence from functional annotation, sequence variation, expression differences, and protein structure variation. CONCLUSIONS Our study provides new insights into the genome evolution of Leguminosae and the genomic diversity of faba bean. It offers valuable genomic and genetic resources for breeding and improvement of faba bean.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Chaoqin Hu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Dan Gao
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Mengwei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Qin Shu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Zonghe Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Xin Yang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Zhengming Dai
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Haitian Yu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Feng Yang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Aiqing Zheng
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Meiyuan Lv
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Vanika Garg
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Chengzhi Jiao
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Hongyan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Wanwei Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Changcai Teng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Xianli Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Chengzhang Du
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Chao Xiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Dongxu Xu
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, 075032, China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Sciences, Qujingaq, Yunnan, 655000, China
| | - Annapurna Chitikineni
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Yinmei Duan
- Dali Academy of Agricultural Sciences, Dali, Yunnan, 671005, China
| | - Fouad Maalouf
- International Center for Agricultural Researchin the, Dry Areas (ICARDA), Beirut, 1108-2010, Lebanon
| | - Shiv Kumar Agrawal
- International Center for Agricultural Researchin the, Dry Areas (ICARDA), Beirut, 1108-2010, Lebanon
| | - Libin Wei
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, Jiangsu, 226541, China
| | - Na Zhao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, Jiangsu, 226541, China
| | - Rutwik Barmukh
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiang Li
- Yuxi Academy of Agricultural Sciences, Yuxi, Yunnan, 653100, China
| | - Dong Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, 250100, China
| | - Hanfeng Ding
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, 250100, China
| | - Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Yuhua He
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China.
| | - Xuxiao Zong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| | - Tao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| |
Collapse
|
4
|
Cheng S, Qi Y, Lu D, Wang Y, Xu X, Zhu D, Ma D, Wang S, Chen C. Comparative transcriptome analysis reveals potential regulatory genes involved in the development and strength formation of maize stalks. BMC PLANT BIOLOGY 2025; 25:272. [PMID: 40021951 PMCID: PMC11871777 DOI: 10.1186/s12870-025-06276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Stalk strength is a critical trait in maize that influences plant architecture, lodging resistance and grain yield. The developmental stage of maize, spanning from the vegetative stage to the reproductive stage, is critical for determining stalk strength. However, the dynamics of the genetic control of this trait remains unclear. RESULTS Here, we report a temporal resolution study of the maize stalk transcriptome in one tropical line and one non-stiff-stalk line using 53 transcriptomes collected covering V7 (seventh leaf stage) through silking stage. The time-course transcriptomes were categorized into four phases corresponding to stalk early development, stalk early elongation, stalk late elongation, and stalk maturation. Fuzzy c-means clustering and Gene Ontology (GO) analyses elucidated the chronological sequence of events that occur at four phases of stalk development. Gene Ontology analysis suggests that active cell division occurs in the stalk during Phase I. During Phase II, processes such as cell wall extension, lignin deposition, and vascular cell development are active. In Phase III, lignin metabolic process, secondary cell wall biogenesis, xylan biosynthesis process, cell wall biogenesis, and polysaccharide biosynthetic process contribute to cell wall strengthening. Defense responses, abiotic stresses, and transport of necessary nutrients or substances are active engaged during Phase IV. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the two maize lines presented significant gene expression differences in the phenylpropanoid biosynthesis pathway and the flavonoid biosynthesis pathway. Certain differentially expressed genes (DEGs) encoding transcription factors, especially those in the NAC and MYB families, may be involved in stalk development. In addition, six potential regulatory genes associated with stalk strength were identified through weighted gene co-expression network analysis (WGCNA). CONCLUSION The data set provides a high temporal-resolution atlas of gene expression during maize stalk development. These phase-specific genes, differentially expressed genes, and potential regulatory genes reported in this study provide important resources for further studies to elucidate the genetic control of stalk development and stalk strength formation in maize.
Collapse
Affiliation(s)
- Senan Cheng
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Youhui Qi
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Dusheng Lu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yancui Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xitong Xu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Deyun Zhu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Dijie Ma
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuyun Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Cuixia Chen
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Wang X, Jiao Z, Zhang Y, Shi Q, Wang Q, Zhou F, Xu D, Wang G, Kong F, Zhang H, Li P, Wang H, Li G. DBB2 regulates plant height and shade avoidance responses in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39936861 DOI: 10.1111/jipb.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Increasing plant density has been recognized as an effective strategy for boosting maize yields over the past few decades. However, dense planting significantly reduces the internal light intensity and the red to far-red (R:FR) light ratio in the canopy, which subsequently triggers shade avoidance responses (SAR) that limit further yield enhancements, particularly under high-density conditions. In this study, we identified double B-box containing protein DBB2, a member of the ZmBBX family that is rapidly induced by shade, as a crucial regulator of plant height and SAR. Disruption of DBB2 resulted in shorter internodes, reduced plant height, decreased cell elongation, and diminished sensitivity to shade in maize, effects that can be largely alleviated by external treatment with gibberellins (GA). Furthermore, we discovered that DBB2 physically interacted with the transcription factor HY5, inhibiting its transcriptional activation of ZmGA2ox4, a gene encoding a GA2 oxidase that can deactivate GA. This interaction positively influences maize plant height through the GA pathway. Additionally, we found that the induction of ZmDBB2 by shade is mediated by the transcription factor PIF4. Interestingly, DBB2 then interacted with PIF4 to enhance the transcriptional activation of cell elongation-related genes, such as ZmEXPA1, thereby establishing a positive feedback loop promoting cell elongation under canopy shade conditions. Our findings highlight the critical role of BBX proteins in modulating plant height and SAR, presenting them as key genetic targets for developing maize varieties suited to high-density planting conditions. This study also provides new insights into the molecular mechanisms underlying SAR and offers potential strategies for the genetic improvement of maize plant architecture and grain yield.
Collapse
Affiliation(s)
- Xiaofei Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zihao Jiao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yonghui Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qingbiao Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Qibin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Fengli Zhou
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Di Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Guodong Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanying Kong
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Haisen Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Pinghua Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyang Wang
- Yazhouwan National Laboratory, Sanya, 572024, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
6
|
Kang C, Zhang L, Hao Y, Sun M, Li M, Tian Z, Dong L, Liu X, Zeng X, Sun Y, Cao S, Zhao Y, Zhou C, Zhao XY, Zhang XS, Lübberstedt T, Yang X, Liu H. Polymerization of beneficial plant height QTLs to develop superior lines which can achieving hybrid performance levels. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:26. [PMID: 39959602 PMCID: PMC11825963 DOI: 10.1007/s11032-025-01546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Heterosis, a key technology in modern commercial maize breeding, is limited by the narrow genetic base which hinders breeders from developing superior hybrid varieties. By integrating big data and functional genomics technologies, it becomes possible to create new super maize inbred lines that resemble hybrid varieties through the aggregation of multiple QTL parental advantage loci. In this study, we utilized a combination of resequencing and field selfing selection methods to develop three pyramiding QTL lines (PQLs) (PQL4, 6, and 7), each containing 15, 12, and 12 QTL loci respectively. Among the three PQLs, PQL6 (266.78 cm/119.39 cm) demonstrated hybrid-like performance comparable to the hybrid (276.96 cm/127.02 cm) (P < 0.05). Testcross between PQL6 and the parental lines revealed that PQL6 had accumulated and fixed advanced parent alleles for superior traits in plant and ear height. The significant increase in PQL6 plant height primarily resulted from the aggregation of two major effective QTL (qEH2-1 and qEH8-1 on chromosomes 2 and 8), indicating that the aggregation of major effective QTL is a key selection indicator. Furthermore, PQL6 exhibited slow vegetative growth but experienced a rapid height increase during the reproductive stage, particularly in the 1-2 weeks before flowering, when its growth rate accelerated and surpassed that of the hybrid varieties. Our study explored the time period and key parameter indicators for molecular breeding of maize, providing a theoretical concept and practices for further complex multi-trait design and aggregation. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01546-4.
Collapse
Affiliation(s)
- Congbin Kang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Lin Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Yichen Hao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Mingfei Sun
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Mengyao Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Ziang Tian
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Ling Dong
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Xianjun Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Xing Zeng
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Yanjie Sun
- Suihua Branch, Heilongjiang Academy of Agricultural Sciences, Suihua, 152052 China
| | - Shiliang Cao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Yajie Zhao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Chao Zhou
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xiang Yu Zhao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xian Sheng Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | | | - Xuerong Yang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Hongjun Liu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
7
|
Duan H, Li J, Xue Z, Yang L, Sun Y, Ju X, Zhang J, Xu G, Xiong X, Sun L, Xu S, Xie H, Ding D, Zhang X, Zhang X, Tang J. Genetic dissection of internode length confers improvement for ideal plant architecture in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17245. [PMID: 39935173 DOI: 10.1111/tpj.17245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
The optimal plant architecture, characterized by short stature, helps mitigate lodging, enables high-density planting, and facilitates mechanized harvesting. Internode length (IL), a crucial component of plant height in maize, plays a significant role in these processes. However, the genetic mechanisms underlying internode elongation remain poorly understood. In this study, we conducted a genome-wide association study to dissect the genetic architecture of IL in maize. The lengths of five internodes above and below the ear (referred as IL-related traits) were collected across multiple environments, revealing substantial variation. A total of 108 quantitative trait loci (QTL) were associated with 11 IL-related traits, with 17 QTL co-detected by different traits. Notably, three QTL have been selected in maize breeding progress. Three hundred and three genes associated with IL were found to operate through plant hormone signal transduction, receptor activity, and carbon metabolism pathways, influencing internode elongation. ZmIL1, which encodes alcohol dehydrogenase, exhibited a high expression level in internodes during the vegetative stage and has been selected in Chinese modern maize breeding. Additionally, ZmIL2 and ZmIL3 emerged as other crucial regulators of IL. Importantly, ZmIL1 has potential applications in maize varieties in the Huang-Huai-Hai region. This study represents the first comprehensive report on the genetic architecture of nearly all ILs in maize, providing profound insights into internode elongation mechanisms and genetic resources. These findings hold significant implications for dwarf breeding programs aimed at optimizing plant architecture for enhancing agronomic performance.
Collapse
Affiliation(s)
- Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhengjie Xue
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lu Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaolong Ju
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jihong Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Guoqiang Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
8
|
Zhou Y, Li Y, Luo L, Zhang D, Wang X, Chen Y, Zhang Y, Zhang Q, Luo H, Xie P, Du Y, Duan S, Zhou Y, Yang T, Li X, He R, Li Y, Cheng M, Li Y, Ma Z, He J, Rong T, Tang Q. Maize-Tripsacum-Teosinte allopolyploid (MTP), a novel dwarf mutant inducer tool in maize. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:112-127. [PMID: 39361445 DOI: 10.1111/pbi.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Dwarf plant architecture facilitates dense planting, and increased planting densities boost the maize yield. However, breeding applications of dwarfing materials for maize are currently limited. There is an urgent need remove the obstacles to applying dwarf resources. Here, we innovated a new method to add a novel maize dwarf germplasm through the distant hybridization of Maize-Tripsacum-Teosinte allopolyploid (MTP) with maize. We identified ten independent dwarf families with unique characteristics. Five germplasms in our library were controlled by their respective dwarf genes. However, no allele was controlled by Br2. Subsequently, d024 in the library was successfully fine mapped, revealing its linkage to indel-4 in ZmCYP90D1. The indel-4 polymorphism regulates the expression of ZmCYP90D1 and is controlled by an upstream transcription factor (ZmBES1/BZR1-5). The indel-4 of ZmCYP90D1 allele, which reduces plant height, originated from Tripsacum, a wild variety of maize. However, d024 exhibits sensitivity to brassinosteroids (BRs), with lower castasterone levels in the internodes than that in the wild type. Furthermore, ZmCYP90D1 interacted with ZmFDXs and ZmNAD(P)H to positively regulate the downstream BR synthesis pathway. Additionally, we showed that introgressing the indel-4 of the Tripsacum allele into modern hybrids ensures yield potential and improves the harvest index under high-density conditions. Overall, as we begin to manufacture highly engineered dwarf materials using the MTP, this approach will solve the problems faced by corn dwarfs.
Collapse
Affiliation(s)
- Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Li
- Mianyang teachers' college, Mianyang, Sichuan, China
| | - Lin Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Delong Zhang
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Xingyu Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yibo Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hanyu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Xie
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yiyang Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Saifei Duan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tao Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaofeng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ruyu He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yingzheng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingjun Cheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yan Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences/Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhibin Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianmei He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Luo J, Wang X, Pang W, Jiang J. GA3-Induced SlXTH19 Expression Enhances Cell Wall Remodeling and Plant Height in Tomatoes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3578. [PMID: 39771276 PMCID: PMC11677118 DOI: 10.3390/plants13243578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Plant height represents a pivotal agronomic trait for the genetic enhancement of crops. The plant cell wall, being a dynamic entity, is crucial in determining plant stature; however, the regulatory mechanisms underlying cell wall remodeling remain inadequately elucidated. This study demonstrates that the application of gibberellin 3 (GA3) enhances both plant height and cell wall remodeling in tomato (Solanum lycopersicum L.) plants. RNA sequencing (RNA-seq) results of GA3 treatment showed that the DEGs were mostly enriched for cell wall-related pathways; specifically, GA3 treatment elicited the expression of the cell wall-associated gene XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 19 (SlXTH19), whose overexpression resulted in increased plant height. Comparative analyses revealed that SlXTH19-overexpressing lines exhibited larger cell dimensions and increased XTH activity, along with higher contents of lignin, cellulose, and hemicellulose, thereby underscoring the gene's role in maintaining cell wall integrity. Conversely, treatments with ethephon (ETH) and 1-Naphthaleneacetic acid (NAA) led to suppressed plant height and reduced SlXTH19 expression. Collectively, these findings illuminate a competitive interplay between GA and ethylene/auxin signaling pathways in regulating cell wall remodeling via SlXTH19 activation, ultimately influencing tomato plant height.
Collapse
Affiliation(s)
- Junfeng Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (X.W.)
| | - Xi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (X.W.)
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (X.W.)
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (X.W.)
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang 110866, China
| |
Collapse
|
10
|
Mao F, Luo L, Ma N, Qu Q, Chen H, Yi C, Cao M, Shao E, Lin H, Lin Z, Zhu F, Lu G, Lin D. A Spatiotemporal Transcriptome Reveals Stalk Development in Pearl Millet. Int J Mol Sci 2024; 25:9798. [PMID: 39337286 PMCID: PMC11432187 DOI: 10.3390/ijms25189798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Pearl millet is a major cereal crop that feeds more than 90 million people worldwide in arid and semi-arid regions. The stalk phenotypes of Poaceous grasses are critical for their productivity and stress tolerance; however, the molecular mechanisms governing stalk development in pearl millet remain to be deciphered. In this study, we spatiotemporally measured 19 transcriptomes for stalk internodes of four different early developmental stages. Data analysis of the transcriptomes defined four developmental zones on the stalks and identified 12 specific gene sets with specific expression patterns across the zones. Using weighted gene co-expression network analysis (WGCNA), we found that two co-expression modules together with candidate genes were involved in stalk elongation and the thickening of pearl millet. Among the elongation-related candidate genes, we established by SELEX that a MYB-family transcription factor PMF7G02448 can bind to the promoters of three cell wall synthases genes (CesAs). In summary, these findings provide insights into stalk development and offer potential targets for future genetic improvement in pearl millet.
Collapse
Affiliation(s)
- Fei Mao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Luo
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nana Ma
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Qu
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Chen
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Yi
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Cao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ensi Shao
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangjie Zhu
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Yang J, Li M, Yin Y, Liu Y, Gan X, Mu X, Li H, Li J, Li H, Zheng J, Gou M. Spatial accumulation of lignin monomers and cellulose underlying stalk strength in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108918. [PMID: 38986238 DOI: 10.1016/j.plaphy.2024.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Lodging largely affects yield, quality and mechanical harvesting of maize. Stalk strength is one of the major factors that affect maize lodging. Although plant cell wall components including lignin and cellulose were known to be associated with stalk strength and lodging resistance, spatial accumulation of specific lignin monomers and cellulose in different tissues and their association with stalk strength in maize was not clearly understood. In this study, we found that both G and S lignin monomers accumulate highest in root, stem rind and leaf vein. Consistently, most lignin biosynthetic genes were expressed higher in root and stem than in other tissues. However, cellulose appears to be lowest in root. There are only mild changes of G lignin and cellulose in different internodes. Instead, we noticed a dramatic decrease of S-lignin accumulation and lignin biosynthetic gene expression in 2nd to 4th internodes wherein stem breakage usually occurs, thereby revealing a few candidate lignin biosynthetic genes associated with stalk strength. Moreover, stalk strength is positively correlated with G, S lignin, and cellulose, but negatively correlated with S/G ratio based on data of maize lines with high or low stalk strength. Loss-of-function of a caffeic acid o-methyltransferase (COMT), which is involved in S lignin biosynthesis, in the maize bm3 mutant, leads to lower stalk strength. Our data collectively suggest that stalk strength is determined by tissue-specific accumulation of lignin monomers and cellulose, and manipulation of the cell wall components by genetic engineering is vital to improve maize stalk strength and lodging resistance.
Collapse
Affiliation(s)
- Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Meng Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yue Yin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yan Liu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinke Gan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xiaohuan Mu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Hanqin Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jiankun Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Haochuan Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Liu J, Carriquí M, Xiong D, Kang S. Influence of IAA and ABA on maize stem vessel diameter and stress resistance in variable environments. PHYSIOLOGIA PLANTARUM 2024; 176:e14443. [PMID: 39039017 DOI: 10.1111/ppl.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
13
|
Zhang Y, Gu S, Du J, Huang G, Shi J, Lu X, Wang J, Yang W, Guo X, Zhao C. Plant microphenotype: from innovative imaging to computational analysis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:802-818. [PMID: 38217351 PMCID: PMC10955502 DOI: 10.1111/pbi.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 01/15/2024]
Abstract
The microphenotype plays a key role in bridging the gap between the genotype and the complex macro phenotype. In this article, we review the advances in data acquisition and the intelligent analysis of plant microphenotyping and present applications of microphenotyping in plant science over the past two decades. We then point out several challenges in this field and suggest that cross-scale image acquisition strategies, powerful artificial intelligence algorithms, advanced genetic analysis, and computational phenotyping need to be established and performed to better understand interactions among genotype, environment, and management. Microphenotyping has entered the era of Microphenotyping 3.0 and will largely advance functional genomics and plant science.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shenghao Gu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianjun Du
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guanmin Huang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunjiang Zhao
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
14
|
Yang H, Zhang Z, Zhang N, Li T, Wang J, Zhang Q, Xue J, Zhu W, Xu S. QTL mapping for plant height and ear height using bi-parental immortalized heterozygous populations in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1371394. [PMID: 38590752 PMCID: PMC10999566 DOI: 10.3389/fpls.2024.1371394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Introduction Plant height (PH) and ear height (EH) are key plant architectural traits in maize, which will affect the photosynthetic efficiency, high plant density tolerance, suitability for mechanical harvesting. Methods QTL mapping were conducted for PH and EH using a recombinant inbred line (RIL) population and two corresponding immortalized backcross (IB) populations obtained from crosses between the RIL population and the two parental lines. Results A total of 17 and 15 QTL were detected in the RIL and IB populations, respectively. Two QTL, qPH1-1 (qEH1-1) and qPH1-2 (qEH1-4) in the RIL, were simultaneously identified for PH and EH. Combing reported genome-wide association and cloned PH-related genes, co-expression network analyses were constructed, then five candidate genes with high confidence in major QTL were identified including Zm00001d011117 and Zm00001d011108, whose homologs have been confirmed to play a role in determining PH in maize and soybean. Discussion QTL mapping used a immortalized backcross population is a new strategy. These identified genes in this study can provide new insights for improving the plant architecture in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wanchao Zhu
- College of Agronomy, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi, China
| | - Shutu Xu
- College of Agronomy, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Zhao P, Yang S, Zheng Y, Zhang L, Li Y, Li J, Wang W, Wang Z. Polylactic acid microplastics have stronger positive effects on the qualitative traits of rice (Oryza sativa L.) than polyethylene microplastics: Evidence from a simulated field experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170334. [PMID: 38301794 DOI: 10.1016/j.scitotenv.2024.170334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Soil pollution by microplastics (MPs) from different types of agricultural films has received substantial attention due to its potential effects on crop quality. To date, the effects of different types of MPs on rice grain quality and their underlying molecular mechanisms have not been clarified. In this study, we examined the effects of polyethylene MPs (PE-MPs) and biodegradable polylactic acid MPs (PLA-MPs) on rice grain quality at the environmental level (0.5 %) and evaluated the molecular mechanism through transcriptome analysis. PE- and PLA-MPs increased the number of rice grains per plant by 19.83 % and 24.66 %, respectively, and decreased the rice empty-shell rate by 55.89 % and 26.53 %, respectively. However, PLA-MPs increased the 1000-seed weight by 11.37 %, whereas PE-MPs had no obvious impact in this respect. Furthermore, MP exposure, especially that of PE-MPs, affected the content of mineral elements, fatty acids, and amino acids of rice grains by disturbing the expression of genes related to these functions and metabolism. Our findings provide insights into the response of rice grains to the stress caused by different MPs.
Collapse
Affiliation(s)
- Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Siyu Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Yaoying Zheng
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Yongli Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Wei Wang
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
16
|
Yu J, Song G, Guo W, Le L, Xu F, Wang T, Wang F, Wu Y, Gu X, Pu L. ZmBELL10 interacts with other ZmBELLs and recognizes specific motifs for transcriptional activation to modulate internode patterning in maize. THE NEW PHYTOLOGIST 2023; 240:577-596. [PMID: 37583092 DOI: 10.1111/nph.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 08/17/2023]
Abstract
Plant height is an important agronomic trait that affects crop yield. Elucidating the molecular mechanism underlying plant height regulation is also an important question in developmental biology. Here, we report that a BELL transcription factor, ZmBELL10, positively regulates plant height in maize (Zea mays). Loss of ZmBELL10 function resulted in shorter internodes, fewer nodes, and smaller kernels, while ZmBELL10 overexpression increased plant height and hundred-kernel weight. Transcriptome analysis and chromatin immunoprecipitation followed by sequencing showed that ZmBELL10 recognizes specific sequences in the promoter of its target genes and activates cell division- and cell elongation-related gene expression, thereby influencing node number and internode length in maize. ZmBELL10 interacted with several other ZmBELL proteins via a spatial structure in its POX domain to form protein complexes involving ZmBELL10. All interacting proteins recognized the same DNA sequences, and their interaction with ZmBELL10 increased target gene expression. We identified the key residues in the POX domain of ZmBELL10 responsible for its protein-protein interactions, but these residues did not affect its transactivation activity. Collectively, our findings shed light on the functions of ZmBELL10 protein complexes and provide potential targets for improving plant architecture and yield in maize.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shangrao Normal University, Shangrao, 334001, China
| | - Fanhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
17
|
Wang W, Guo W, Le L, Yu J, Wu Y, Li D, Wang Y, Wang H, Lu X, Qiao H, Gu X, Tian J, Zhang C, Pu L. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. MOLECULAR PLANT 2023; 16:354-373. [PMID: 36447436 PMCID: PMC11801313 DOI: 10.1016/j.molp.2022.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/05/2022] [Accepted: 11/27/2022] [Indexed: 06/16/2023]
Abstract
Plant height (PH) is an essential trait in maize (Zea mays) that is tightly associated with planting density, biomass, lodging resistance, and grain yield in the field. Dissecting the dynamics of maize plant architecture will be beneficial for ideotype-based maize breeding and prediction, as the genetic basis controlling PH in maize remains largely unknown. In this study, we developed an automated high-throughput phenotyping platform (HTP) to systematically and noninvasively quantify 77 image-based traits (i-traits) and 20 field traits (f-traits) for 228 maize inbred lines across all developmental stages. Time-resolved i-traits with novel digital phenotypes and complex correlations with agronomic traits were characterized to reveal the dynamics of maize growth. An i-trait-based genome-wide association study identified 4945 trait-associated SNPs, 2603 genetic loci, and 1974 corresponding candidate genes. We found that rapid growth of maize plants occurs mainly at two developmental stages, stage 2 (S2) to S3 and S5 to S6, accounting for the final PH indicators. By integrating the PH-association network with the transcriptome profiles of specific internodes, we revealed 13 hub genes that may play vital roles during rapid growth. The candidate genes and novel i-traits identified at multiple growth stages may be used as potential indicators for final PH in maize. One candidate gene, ZmVATE, was functionally validated and shown to regulate PH-related traits in maize using genetic mutation. Furthermore, machine learning was used to build predictive models for final PH based on i-traits, and their performance was assessed across developmental stages. Moderate, strong, and very strong correlations between predictions and experimental datasets were achieved from the early S4 (tenth-leaf) stage. Colletively, our study provides a valuable tool for dissecting the spatiotemporal formation of specific internodes and the genetic architecture of PH, as well as resources and predictive models that are useful for molecular design breeding and predicting maize varieties with ideal plant architectures.
Collapse
Affiliation(s)
- Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongwei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan 250200, China
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|