1
|
Lei C, Chen Z, Hao Y, Huang W, Chu T, Xiao K, Zhang C, Zhou W, Li C, Chen X. Quantitative and site-specific chemoproteomic profiling of O-GlcNAcylation in Drosophila. Bioorg Med Chem 2025; 124:118191. [PMID: 40245499 DOI: 10.1016/j.bmc.2025.118191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025]
Abstract
Protein O-GlcNAcylation plays a crucial role in Drosophila melanogaster development. Dysregulation of O-GlcNAc transferase (sxc/Ogt) and O-GlcNAcase (Oga) disrupts early embryogenesis and locomotor behavior. It is therefore of great interest to identify and quantitatively analyze O-GlcNAcylation sites in Drosophila. Here, we perform quantitative and site-specific profiling of O-GlcNAcylation in Drosophila by employing a chemoenzymatic labeling strategy. A total of 2196 unambiguous O-GlcNAcylation sites and 1308 O-GlcNAcylated proteins are identified. Quantitative analysis of O-GlcNAcylation in the head of Drosophila with sxc/Ogt knockdown in GABAergic neurons reveals a reduction in O-GlcNAcylation of several proteins involved in muscle development, consistent with the phenotypic defects observed in sxc/Ogt RNAi Drosophila. Furthermore, quantitative analysis of O-GlcNAcylation under a high-sugar diet reveals altered O-GlcNAcylation of several proteins associated with obesity and neurological diseases, such as Hex-A and Ankyrin 2. Our study not only establishes an effective method for large-scale identification of O-GlcNAcylation sites, but also provides a valuable resource for studying O-GlcNAc biology in Drosophila.
Collapse
Affiliation(s)
- Cong Lei
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.
| | - Zihan Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Wanping Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Tianyu Chu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kangming Xiao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Chenjian Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
2
|
Liu T, Wang P, Wang Z, Dun W, Li J, Yu R. SPY Interacts With Tubulin and Regulates Abscisic Acid-Induced Stomatal Closure in Arabidopsis. PLANT DIRECT 2025; 9:e70063. [PMID: 40170882 PMCID: PMC11959150 DOI: 10.1002/pld3.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
Sugars are important both as an energy source and a signaling cue. In Arabidopsis thaliana, SPINDLY (SPY) is the bona fide O-fucosylation transferase that links sugar with various plant growth and development processes. Previously, spy was shown to display a strong salt and drought tolerance phenotype. Herein we confirmed the phenotype and further studied its mechanism. We found that abscisic acid (ABA) elevated SPY expression in guard cells, and SPY is involved in ABA-induced stomatal closure. We show that SPY regulates the rearrangement of the microtubule cytoskeleton in guard cells. Moreover, ABA-induced microtubule reorganization is enhanced in spy mutants. Mechanistically, SPY interacts with α-tubulin1 (TUA1) in both yeast-two hybrid, bimolecular fluorescence complementation and split luciferase complementation imaging assays, indicating that TUA1 may be O-fucosylated by SPY. Our work is in line with the notion that SPY has many substrates involved in diverse processes in plants, and also unearths a key mechanism how glycosylation regulates the stomata movement via the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Tongtong Liu
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Pan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zixuan Wang
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Weipeng Dun
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Jing Li
- College of Life SciencesCapital Normal UniversityBeijingChina
- Beijing Key Laboratory of DNA Damage ResponseCapital Normal UniversityBeijingChina
| | - Rong Yu
- College of Life SciencesCapital Normal UniversityBeijingChina
| |
Collapse
|
3
|
Aizezi Y, Yuan Y, Xu SL, Wang ZY. A tale of two sugars: O-GlcNAc and O-fucose orchestrate growth, development, and acclimation in plants. Trends Biochem Sci 2025; 50:332-343. [PMID: 39934053 PMCID: PMC11972145 DOI: 10.1016/j.tibs.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Post-translational modifications of nucleocytoplasmic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) and O-linked fucose (O-fucose) are emerging as key signaling mechanisms in plants. O-fucosylation and O-GlcNAcylation are catalyzed by SPINDLY (SPY) and SECRET AGENT (SEC), respectively, which are redundantly essential for viability and growth yet function antagonistically or independently in specific developmental contexts. Proteomic studies have identified hundreds of O-GlcNAcylated and O-fucosylated nucleocytoplasmic proteins, revealing their regulatory roles and intersections with phosphorylation pathways that mediate nutrient and hormone signaling. Functional studies on O-glycosylated proteins demonstrate diverse impacts on protein activity and biological processes. Together, O-fucosylation, O-GlcNAcylation, and phosphorylation form a regulatory network that controls plant growth, development, and acclimation. This review highlights recent progress and outlines future directions in studying O-fucosylation and O-GlcNAcylation in plants.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yizhong Yuan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| |
Collapse
|
4
|
Lei C, Li X, Li W, Chen Z, Liu S, Cheng B, Hu Y, Song Q, Qiu Y, Zhou Y, Meng X, Yu H, Zhou W, Chen X, Li J. Chemical Glycoproteomic Profiling in Rice Seedlings Reveals N-glycosylation in the ERAD-L Machinery. Mol Cell Proteomics 2025; 24:100883. [PMID: 39577566 PMCID: PMC11869521 DOI: 10.1016/j.mcpro.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
As a ubiquitous and essential posttranslational modification occurring in both plants and animals, protein N-linked glycosylation regulates various important biological processes. Unlike the well-studied animal N-glycoproteomes, the landscape of rice N-glycoproteome remains largely unexplored. Here, by developing a chemical glycoproteomic strategy based on metabolic glycan labeling, we report a comprehensive profiling of the N-glycoproteome in rice seedlings. The rice seedlings are incubated with N-azidoacetylgalactosamine-a monosaccharide analog containing a bioorthogonal functional group-to metabolically label N-glycans, followed by conjugation with an affinity probe via click chemistry for the enrichment of the N-glycoproteins. Subsequent mass spectrometry analyses identify a total of 403 N-glycosylation sites and 673 N-glycosylated proteins, which are involved in various important biological processes. In particular, the core components of the endoplasmic reticulum-associated protein degradation machinery are N-glycosylated, and the N-glycosylation is important for the endoplasmic reticulum-associated protein degradation-L function. This work not only provides an invaluable resource for studying rice N-glycosylation but also demonstrates the applicability of metabolic glycan labeling in glycoproteomic profiling for crop species.
Collapse
Affiliation(s)
- Cong Lei
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Yazhouwan National Laboratory, Sanya, China
| | - Xilong Li
- Yazhouwan National Laboratory, Sanya, China.
| | - Wenjia Li
- Yazhouwan National Laboratory, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zihan Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yili Hu
- Yazhouwan National Laboratory, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qitao Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yahong Qiu
- Yazhouwan National Laboratory, Sanya, China
| | - Yilan Zhou
- Yazhouwan National Laboratory, Sanya, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Yu
- Yazhouwan National Laboratory, Sanya, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China.
| | - Jiayang Li
- Yazhouwan National Laboratory, Sanya, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Hou C, Li W, Li Y, Ma J. O-GlcNAc informatics: advances and trends. Anal Bioanal Chem 2025; 417:895-905. [PMID: 39294469 DOI: 10.1007/s00216-024-05531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
As a post-translational modification, protein glycosylation is critical in health and disease. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), as an intracellular monosaccharide modification on proteins, was discovered 40 years ago. Thanks to technological advances, the physiological and pathological significance of O-GlcNAcylation has been gradually revealed and widely appreciated, especially in recent years. O-GlcNAc informatics has been quickly evolving. Clearly, O-GlcNAc informatics tools have not only facilitated O-GlcNAc functional studies, but also provided us a unique perspective on protein O-GlcNAcylation. In this article, we review O-GlcNAc-focused software tools and servers that have been developed for O-GlcNAc research over the past four decades. Specifically, we will (1) survey bioinformatics tools that have facilitated O-GlcNAc proteomics data analysis, (2) introduce databases/servers for O-GlcNAc proteins/sites that have been experimentally identified by individual research labs, (3) describe software tools that have been developed to predict O-GlcNAc sites, and (4) introduce platforms cataloging proteins that interact with the O-GlcNAc cycling enzymes (i.e., O-GlcNAc transferase and O-GlcNAcase). We hope these resources will provide useful information to both experienced researchers and new incomers to the O-GlcNAc field. We anticipate that this review provides a framework to stimulate the future development of more sophisticated informatic tools for O-GlcNAc research.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Weiyu Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|
6
|
Luo W, Sun L. O-Linked N-Acetylglucosamine Transferase Regulates Bone Homeostasis Through Alkaline Phosphatase Pathway in Diabetic Periodontitis. Mol Biotechnol 2024; 66:3475-3484. [PMID: 37951846 DOI: 10.1007/s12033-023-00947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023]
Abstract
Periodontitis is one of the most common complications of diabetes, which seriously affects patients' life quality. It is important to find the key factors and mechanisms to improve the treatment of periodontitis. In our study, high glucose (HG) and lipopolysaccharide (LPS) treated human periodontal ligament cells (hPDLCs) and LPS treated diabetic mice was used to establish the diabetic periodontitis model in vitro and in vivo. O-linked beta-N-acetylglucosamine glycosylation (O-GlcNAcylation) and O-linked N-acetylglucosamine transferase (OGT) protein levels were detected by western blot assay. Cell counting kit-8, alkaline phosphatase (ALP), and alizarin red staining (ARS) assays were used to observe the O-GlcNAcylation and OGT effects on cell viability and osteoblast differentiation. Co-immunoprecipitation (Co-IP) assay was used to detect the relationship between OGT and ALP. The results showed that the levels of OGT and O-GlcNAcylation were significantly increased in both cell and mouse models. ALP and ARS staining results showed that silencing of OGT or inhibition of O-glycosylation notably improved osteogenic differentiation, increased the osteoprotegerin (OPG) protein levels and decreased the receptor activator for nuclear factor-κB Ligand (RANKL) protein levels of the HG and LPS treated hPDLCs. In diabetic periodontitis mice, knockdown of OGT relieved the injury of gingival tissue, increased the ALP and OPG levels and decreased the RANKL levels. Besides, ALP interacted with OGT protein, and OGT protein was found to act on ALP serine 513 glycosylation. In conclusion, our study demonstrated that excessive O-GlcNAcylation could restrain osteoblast differentiation by O-glycosylation in ALP.
Collapse
Affiliation(s)
- Wei Luo
- Beijing Hanhe Daguanying Dental Clinic, No. 182 Guang'an Menwai Street, Xicheng District, 100055, Beijing, China.
| | - Lu Sun
- Department of Stomatology, The First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| |
Collapse
|
7
|
Hou C, Deng J, Wu C, Zhang J, Byers S, Moremen KW, Pei H, Ma J. Ultradeep O-GlcNAc proteomics reveals widespread O-GlcNAcylation on tyrosine residues of proteins. Proc Natl Acad Sci U S A 2024; 121:e2409501121. [PMID: 39531497 PMCID: PMC11588081 DOI: 10.1073/pnas.2409501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As a unique type of glycosylation, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on Ser/Thr residues of proteins was discovered 40 y ago. O-GlcNAcylation is catalyzed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove O-GlcNAc, respectively. O-GlcNAcylation is an essential glycosylation that regulates the functions of many proteins in virtually all cellular processes. However, deep and site-specific characterization of O-GlcNAcylated proteins remains a challenge. We developed an ultradeep O-GlcNAc proteomics workflow by integrating digestion with multiple proteases, two mass spectrometric approaches (i.e., electron-transfer/higher-energy collision dissociation [EThcD] and HCD product-dependent electron-transfer/higher-energy collision dissociation [HCD-pd-EThcD]), and two data analysis tools (i.e., MaxQuant and Proteome Discoverer). The performance of this strategy was benchmarked by the analysis of whole lysates from PANC-1 (a pancreatic cancer cell line). In total, 2,831 O-GlcNAc sites were unambiguously identified, representing the largest O-GlcNAc dataset of an individual study reported so far. Unexpectedly, in addition to confirming known sites and identifying many other sites of Ser/Thr modification, O-GlcNAcylation was found on 121 tyrosine (Tyr) residues of 93 proteins. In vitro enzymatic assays showed that OGT catalyzes the transfer of O-GlcNAc onto Tyr residues of peptides and OGA catalyzes its removal. Taken together, our work reveals widespread O-GlcNAcylation on Tyr residues of proteins and that Tyr O-GlcNAcylation is mediated by OGT and OGA. As another form of glycosylation, Tyr O-GlcNAcylation is likely to have important regulatory roles.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Jingtao Deng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Jing Zhang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA30302
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA30602
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| |
Collapse
|
8
|
Kim YC, Hartweck LM, Olszewski NE. E. coli-expressed SECRET AGENT O-GlcNAc modifies threonine 829 of GIGANTEA. FRONTIERS IN PLANT SCIENCE 2024; 15:1343066. [PMID: 39091319 PMCID: PMC11291313 DOI: 10.3389/fpls.2024.1343066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 08/04/2024]
Abstract
The Arabidopsis thaliana glycosyl transferases SPINDLY (SPY) and SECRET AGENT (SEC) modify nuclear and cytosolic proteins with O-linked fucose or O-linked N-acetylglucosamine (O-GlcNAc), respectively. O-fucose and O-GlcNAc modifications can occur at the same sites. SPY interacts physically and genetically with GIGANTEA (GI), suggesting that it could be modified by both enzymes. Previously, we found that, when co-expressed in Escherichia coli, SEC modifies GI; however, the modification site was not determined. By analyzing the overlapping sub-fragments of GI, we identified a region that was modified by SEC in E. coli. Modification was undetectable when threonine 829 (T829) was mutated to alanine, while the T834A and T837A mutations reduced the modification, suggesting that T829 was the primary or the only modification site. Mapping using mass spectrometry detected only the modification of T829. Previous studies have shown that the positions modified by SEC in E. coli are modified in planta, suggesting that T829 is O-GlcNAc modified in planta.
Collapse
|
9
|
Shrestha R, Karunadasa S, Grismer TS, Reyes AV, Xu SL. SECRET AGENT O-GlcNAcylates Hundreds of Proteins Involved in Diverse Cellular Processes in Arabidopsis. Mol Cell Proteomics 2024; 23:100732. [PMID: 38336175 PMCID: PMC10979276 DOI: 10.1016/j.mcpro.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
O-GlcNAcylation is a critical post-translational modification of proteins observed in both plants and animals and plays a key role in growth and development. While considerable knowledge exists about over 3000 substrates in animals, our understanding of this modification in plants remains limited. Unlike animals, plants possess two putative homologs: SECRET AGENT (SEC) and SPINDLY, with SPINDLY also exhibiting O-fucosylation activity. To investigate the role of SEC as a major O-GlcNAc transferase in plants, we utilized lectin-weak affinity chromatography enrichment and stable isotope labeling in Arabidopsis labeling, quantifying at both MS1 and MS2 levels. Our findings reveal a significant reduction in O-GlcNAc levels in the sec mutant, indicating the critical role of SEC in mediating O-GlcNAcylation. Through a comprehensive approach, combining higher-energy collision dissociation and electron-transfer high-energy collision dissociation fragmentation with substantial fractionations, we expanded our GlcNAc profiling, identifying 436 O-GlcNAc targets, including 227 new targets. The targets span diverse cellular processes, suggesting broad regulatory functions of O-GlcNAcylation. The expanded targets also enabled exploration of crosstalk between O-GlcNAcylation and O-fucosylation. We also examined electron-transfer high-energy collision dissociation fragmentation for site assignment. This report advances our understanding of O-GlcNAcylation in plants, facilitating further research in this field.
Collapse
Affiliation(s)
- Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - TaraBryn S Grismer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA.
| |
Collapse
|