1
|
Seo MG, Jeong HY, Lim Y, Hong S, Lee J, Hong WJ, Lee C, Park SJ, Kwon CT. Precise customization of plant architecture by combinatorial genetic modification of peptide ligands. PLANT COMMUNICATIONS 2025; 6:101175. [PMID: 39415449 PMCID: PMC11897455 DOI: 10.1016/j.xplc.2024.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/29/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Affiliation(s)
- Myeong-Gyun Seo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho-Young Jeong
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yoonseo Lim
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seungpyo Hong
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jiwoo Lee
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chanhui Lee
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon Ju Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
2
|
Li Q, Wang X, Teng C, He X, Fu X, Peng W, Fan Y, Lyu S. An Improved and Simplified Agrobacterium-Mediated Genetic Transformation Protocol for Solanum nigrum with a Shorter Growth Time. PLANTS (BASEL, SWITZERLAND) 2024; 13:2015. [PMID: 39124132 PMCID: PMC11313741 DOI: 10.3390/plants13152015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Solanum nigrum (Solanaceae family) is widely consumed as a fruit or local leafy vegetable after boiling; it also serves as a medicinal plant. Although Agrobacterium-mediated genetic transformation has been established in S. nigrum, the transformation period is long. Specifically, induction of roots takes approximately five weeks for tetraploid and hexaploid S. nigrum, and 7 weeks for diploid Solanum americanum. In this study, we developed an improved rooting-induced method that requires only about 1 week and avoids the use of tissue culture. After generating the transgenic shoots, they were directly transplanted into the soil to facilitate root formation. Remarkably, 100% of the transgenic shoots developed roots within 6 days. Our improved method is time-saving (saving more than 1 month) and simpler to operate. The improved rooting-induced step can be applied to induce roots in various plants using tissue culture, exemplified by the carnation (Dianthus caryophyllus L.). Furthermore, we applied the improved method to generate S. americanum plants expressing AcMYB110 from kiwifruit (Actinidia chinensis spp.). This method will contribute to speeding up gene functional analysis and trait improvement in S. nigrum and might have potential in fast plant molecular breeding processes in crops and rapid rooting induction in tissue culture.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yinglun Fan
- College of Agriculture, Liaocheng University, Liaocheng 252000, China; (Q.L.); (X.W.)
| | - Shanhua Lyu
- College of Agriculture, Liaocheng University, Liaocheng 252000, China; (Q.L.); (X.W.)
| |
Collapse
|
3
|
Li X, Bu F, Wang L, Kim C, Xue W, Zhang M, Kawabata S, Zhang Q, Li Y, Zhang Y. Optimization of CRISPR-Cas9 system in Eustoma grandiflorum. iScience 2024; 27:109053. [PMID: 38361623 PMCID: PMC10864798 DOI: 10.1016/j.isci.2024.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The optimization of the CRISPR-Cas9 system for enhancing editing efficiency holds significant value in scientific research. In this study, we optimized single guide RNA and Cas9 promoters of the CRISPR-Cas9 vector and established an efficient protoplast isolation and transient transformation system in Eustoma grandiflorum, and we successfully applied the modified CRISPR-Cas9 system to detect editing efficiency of the EgPDS gene. The activity of the EgU6-2 promoter in E. grandiflorum protoplasts was approximately three times higher than that of the GmU6 promoter. This promoter, along with the EgUBQ10 promoter, was applied in the CRISPR-Cas9 cassette, the modified CRISPR-Cas9 vectors that pEgU6-2::sgRNA-2/pEgUBQ10::Cas9-2 editing efficiency was 37.7%, which was 30.3% higher than that of the control, and the types of mutation are base substitutions, small fragment deletions and insertions. Finally we obtained an efficient gene editing vector for E. grandiflorum. This project provides an important technical platform for the study of gene function in E. grandiflorum.
Collapse
Affiliation(s)
- Xueqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fanqi Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lishan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Cholmin Kim
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Branch of Biotechnology, State Academy of Sciences, Pyongyang, the Democratic People’s Republic of Korea
| | - Wanjie Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Man Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo, Japan
| | - Qingzhu Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
4
|
Feng X, Chen Q, Wu W, Wang J, Li G, Xu S, Shao S, Liu M, Zhong C, Wu CI, Shi S, He Z. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat Commun 2024; 15:1635. [PMID: 38388712 PMCID: PMC10884412 DOI: 10.1038/s41467-024-46080-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Guohong Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), 571100, Haikou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
5
|
Yu S, Wang Y, Li T, Shi H, Kong D, Pang J, Wang Z, Meng H, Gao Y, Wang X, Hong Y, Zhu JK, Zhan X, Wang Z. Chromosome-scale assembly and gene editing of Solanum americanum genome reveals the basis for thermotolerance and fruit anthocyanin composition. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:15. [PMID: 38184817 DOI: 10.1007/s00122-023-04523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
Solanum americanum serves as a promising source of resistance genes against potato late blight and is considered as a leafy vegetable for complementary food and nutrition. The limited availability of high-quality genome assemblies and gene annotations has hindered the exploration and exploitation of stress-resistance genes in S. americanum. Here, we present a chromosome-level genome assembly of a thermotolerant S. americanum ecotype and identify a crucial heat-inducible transcription factor gene, SaHSF17, essential for heat tolerance. The CRISPR/Cas9 system-mediated knockout of SaHSF17 results in remarkably reduced thermotolerance in S. americanum, exhibiting a significant suppression of multiple HSP gene expressions under heat treatment. Furthermore, our transcriptome analysis and anthocyanin component investigation of fruits indicated that delphinidins are the major anthocyanins accumulated in the mature dark-purple fruits. The accumulation of delphinidins and other pigment components during fruit ripening in S. americanum coincides with the transcriptional regulation of key genes, particularly the F3'5'H and F3'H genes, in the anthocyanin biosynthesis pathway. By integrating existing knowledge, the development of this high-quality reference genome for S. americanum will facilitate the identification and utilization of novel abiotic and biotic stress-resistance genes for improvement of Solanaceae and other crops.
Collapse
Affiliation(s)
- Shuojun Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yue Wang
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Tingting Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Dali Kong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia Pang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhiqiang Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Huiying Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yang Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xu Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yechun Hong
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangqiang Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|