1
|
Monge‐Waleryszak L, Girard M, Carcagno M, Culerrier R, Vicédo C, Martinez Y, Vérin C, Couté Y, Pacquit V, Deslandes L. Three ARID proteins involved in chromatin remodeling PEAT complexes are targeted by the Ralstonia solanacearum effector PopP2 and contribute to bacterial wilt disease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70205. [PMID: 40358473 PMCID: PMC12071340 DOI: 10.1111/tpj.70205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Like many gram-negative phytopathogenic bacteria, Ralstonia solanacearum uses a type III secretion system to deliver into host cells a cocktail of effector proteins that can interfere with plant defenses and promote infection. One of these effectors, the nuclear-targeted PopP2 acetyltransferase, was reported to inhibit many defensive WRKY transcription factors through acetylation. To gain a better understanding of the mechanisms by which PopP2 might exert its virulence functions, we searched for other PopP2-interacting partners. Here we report the identification of the Arabidopsis thaliana AT-Rich Interaction Domain protein 3 (ARID3) and its close homologs, ARID2 and ARID4, as additional targets of PopP2. These ARID proteins are core components of the chromatin remodeling PEAT complexes that regulate gene expression through histone (de)acetylation and deubiquitination. In yeast, PopP2 binds the conserved C-terminal part of ARID2/3/4, which contains an α-crystallin domain putatively involved in their homo-oligomerization. ARID2/3/4 behave as substrates of PopP2 acetyltransferase activity, which causes the acetylation of several lysine residues conserved between these three proteins and located near their α-crystallin domain. Interestingly, while PopP2 negatively affects ARID3 and ARID4 self-interactions in planta, it promotes the interaction of ARID3 and ARID4 with PWWP1, another component of PEAT complexes, with which PopP2 can also interact. This study also reveals that disruption of ARID2/3/4 results in reduced growth of R. solanacearum. Overall, our data are consistent with a model in which PopP2 targets several components of PEAT complexes to interfere with their epigenetic regulatory functions and promote Ralstonia infection in Arabidopsis.
Collapse
Affiliation(s)
- Léa Monge‐Waleryszak
- Laboratoire des Interactions Plantes‐Microbes‐Environnement (LIPME)Université de Toulouse, INRAE, CNRSCastanet‐TolosanF‐31326France
| | - Maxime Girard
- Laboratoire des Interactions Plantes‐Microbes‐Environnement (LIPME)Université de Toulouse, INRAE, CNRSCastanet‐TolosanF‐31326France
| | - Mélanie Carcagno
- Laboratoire des Interactions Plantes‐Microbes‐Environnement (LIPME)Université de Toulouse, INRAE, CNRSCastanet‐TolosanF‐31326France
| | - Raphaël Culerrier
- Laboratoire des Interactions Plantes‐Microbes‐Environnement (LIPME)Université de Toulouse, INRAE, CNRSCastanet‐TolosanF‐31326France
| | - Céline Vicédo
- Laboratoire des Interactions Plantes‐Microbes‐Environnement (LIPME)Université de Toulouse, INRAE, CNRSCastanet‐TolosanF‐31326France
| | - Yves Martinez
- TRI‐FRAIB Imaging Platform Facilities, FRAIBUniversité de Toulouse, CNRS, UPSCastanet‐Tolosan31320France
| | - Claire Vérin
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048Grenoble38000France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048Grenoble38000France
| | - Valérie Pacquit
- Laboratoire des Interactions Plantes‐Microbes‐Environnement (LIPME)Université de Toulouse, INRAE, CNRSCastanet‐TolosanF‐31326France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes‐Microbes‐Environnement (LIPME)Université de Toulouse, INRAE, CNRSCastanet‐TolosanF‐31326France
| |
Collapse
|
2
|
Li DQ, Liu XL, Yuan M, Sun W, Zhou JM, Wang WM, Fan J. Understanding and enhancing rice resistance to false smut disease. J Genet Genomics 2025:S1673-8527(25)00087-6. [PMID: 40204126 DOI: 10.1016/j.jgg.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Flower-infecting fungi have caused many economically important diseases in crop production. The fungal pathogen Ustilaginoidea virens infects developing rice florets, causing false smut disease, which leads to reduced grain yield and quality, as well as contamination with mycotoxins that pose hazards to human health and food security. To ensure rice production, substantial efforts have been made on understanding the interaction between rice and U. virens. In this review, we summarize the current understanding of rice resistance mechanisms to U. virens. We discuss the evaluation of false smut resistance, quantitative resistance loci, potential defense strategies of rice panicles, pathogen effector-driven identification of resistance-related genes, and engineering of false smut resistance. We conclude by proposing an integrated defense system that includes disease avoidance, immune response, metabolic adaptation, and the inhibition of susceptibility factors. Furthermore, we outline four critical stages of interaction between rice and U. virens that are essential for understanding and enhancing organ-specific rice resistance to false smut disease.
Collapse
Affiliation(s)
- De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiao-Ling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Meng Yuan
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jian-Min Zhou
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China.
| |
Collapse
|
3
|
Qian H, Xiao Z, Cheng L, Geng R, Ma Y, Bi Y, Liang W, Yang A. A Novel Secreted Protein of Fusarium oxysporum Promotes Infection by Inhibiting PR-5 Protein in Plant. PLANT, CELL & ENVIRONMENT 2025; 48:1021-1036. [PMID: 39400398 DOI: 10.1111/pce.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fusarium oxysporum, an important soilborne fungal pathogen that causes serious Fusarium wilt disease, secretes diverse effectors during the infection. In this study, we identified a novel secreted cysteine-rich protein, FolSCP1, which contains unknown protein functional domain. Here, we characterized FolSCP1 as a secreted virulence factor that promotes the pathogen infection of host plants by inhibiting diverse plant defence responses. FolSCP1 interacted with the pathogenesis-related 5 (PR-5) protein SlPR5, a positive regulator of tomato plant immunity against multiple tomato pathogens, and effectively attenuated the antifungal activity of the tomato PR-5 protein. FoSCP1, a homologue of FolSCP1, was secreted by a F. oxysporum isolate from infected tobacco and targeted the tobacco PR-5 protein NtPR5 to suppress plant defence for further infection. In summary, our study revealed a fungal virulence strategy in which F. oxysporum secrete effectors that interfere with plant immunity by binding to the PR-5 protein of the host plant and inhibiting its biological activity, thereby promoting fungal infection.
Collapse
Affiliation(s)
- Hengwei Qian
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiliang Xiao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lirui Cheng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ruimei Geng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yan Ma
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yanxiao Bi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Gong S, Tang J, Xiao Y, Li T, Zhang Q. The fungal effector AaAlta1 inhibits PATHOGENESIS-RELATED PROTEIN10-2-mediated callose deposition and defense responses in apple. PLANT PHYSIOLOGY 2024; 197:kiae599. [PMID: 39589911 DOI: 10.1093/plphys/kiae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Apple leaf spot, caused by Alternaria alternata f. sp mali (ALT), poses a substantial threat to the global apple (Malus × domestica Borkh.) industry. Fungal effectors promote pathogen infestation and survival by interfering with plant immune responses. In our study, we investigated the secretion of effector proteins by the virulent ALT7 strain. Using mass spectrometry, we identified the effector AaAlta1, which belongs to the Alt a 1 protein family (AA1s). Further analysis confirmed that ALT7 secretes AaAlta1. AaAlta1 knockdown mutants displayed reduced pathogenicity in apple tissue culture seedlings, while overexpression strains exhibited enhanced pathogenicity compared to the wild-type ALT7 strain. Using immunoprecipitation followed by mass spectrometry, we isolated pathogenesis-related protein 10-2 (PR10-2) as an interaction partner of AaAlta1 in apple. Knockdown mutants of AaAlta1 showed increased PR10-2-mediated callose deposition in apple, a critical plant defense response. The enhanced defense responses in apple substantially reduced their susceptibility to infection by these ALT7 mutants. Our findings delineate an infection strategy whereby ALT7 secretes AaAlta1 to suppress PR10-2, thereby circumventing the apple defense system.
Collapse
Affiliation(s)
- Shun Gong
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinqi Tang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Xiao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Wang SS, Chang WB, Hsieh MC, Chen SY, Liao DJ, Liao CY, Shen WC, Chen HH, Chen CY, Chen YC, Lin YL, Tung CW, Chen RS, Chung CL. PtrA, Piz-t, and a novel minor-effect QTL (qBR12_3.3-4.4) collectively contribute to the durable blast-resistance of rice cultivar Tainung 84. BOTANICAL STUDIES 2024; 65:37. [PMID: 39692953 DOI: 10.1186/s40529-024-00444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/23/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Rice blast caused by Pyricularia oryzae is a major threat to rice production worldwide. Tainung 84 (TNG84) is an elite japonica rice cultivar developed through the traditional pedigree method. It has maintained superior blast resistance since its release in 2010. This study aimed to investigate the genetic factors underlying the durable resistance of TNG84 in Taiwan. RESULTS Quantitative trait locus (QTL) mapping was conducted using 122 F2 individuals and F2:3 families derived from the cross of TNG84 and a susceptible japonica cultivar Tainan 11 (TN11). Using 733 single nucleotide polymorphisms (SNPs) obtained through genotyping-by-sequencing and three P. oryzae isolates (D41-2, 12CY-MS1-2, and 12YL-TT4-1) belonging to different physiological races and Pot2 lineages, a major QTL was identified in the region of 52-54 cM (9.54-15.16 Mb) on chromosome 12. Fine-mapping using 21 F5:6 recombinants delimited the QTL to a 140.4-kb region (10.78 to 10.93 Mb) containing the known resistance gene Ptr. Sequencing analysis indicated that TNG84 carries the resistant PtrA allele and TN11 carries the susceptible PtrD allele. Investigation of the Ptr haplotypes in 41 local japonica rice cultivars revealed that eight PtrA-containing cultivars (19.5%) consistently exhibited good field resistance in Taiwan from 2008 to 2024. Subsequently, a few F5:6 lines (P026, P044, P092, and P167) lacking the resistant Ptr allele were observed to exhibit a resistant phenotype against P. oryzae 12YL-TT4-1-lab. Trait-marker association analyses using eight F6:7 homozygous recombinants, 378 BC1F2 from P044 backcrossed to TN11, and 180 BC1F2 from P092 backcrossed to TN11, identified Piz-t on chromosome 6 and a new QTL located between 3.3 Mb and 4.4 Mb on chromosome 12 (designated as qBR12_3.3-4.4). Analysis of 12 selected BC1F2:3 lines derived from P044 demonstrated that in the absence of Ptr and Piz-t, qBR12_3.3-4.4 alone reduced the disease severity index from approximately 6.3 to 3.9. CONCLUSIONS PtrA is likely the primary gene responsible for the broad-spectrum and durable resistance of TNG84. Piz-t confers narrow-spectrum resistance, while qBR12_3.3-4.4 contributes partial resistance. The discovery of qBR12_3.3-4.4 has provided a new source of blast resistance, and the markers developed in this study can be utilized in future breeding programs.
Collapse
Affiliation(s)
- Sheng-Shan Wang
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, No. 70, Muchang, Xinhua, Tainan, 712009, Taiwan
| | - Wei-Bin Chang
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, No. 70, Muchang, Xinhua, Tainan, 712009, Taiwan
| | - Ming-Chien Hsieh
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Szu-Yu Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Dah-Jing Liao
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Agricultural Research Institute, Ministry of Agriculture, No. 2, Minquan Rd., Chiayi City, 600015, Taiwan
| | - Ching-Ying Liao
- Taitung District Agricultural Research and Extension Station, Ministry of Agriculture, No. 675, Chunghua Rd., Sec. 1, Taitung City, 950244, Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Hong-Hua Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Chieh-Yi Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Yi-Chia Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Yueh-Lin Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 600355, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan.
| |
Collapse
|
6
|
Duan Y, Li P, Zhang D, Wang L, Fang Y, Hu H, Mao Q, Zhou X, Zhao P, Li X, Wei J, Tang J, Pan L, Liu H, Chen X, Chen X, Hsiang T, Huang J, Zheng L. S-palmitoylation of MAP kinase is essential for fungal virulence. mBio 2024; 15:e0270424. [PMID: 39470248 PMCID: PMC11633104 DOI: 10.1128/mbio.02704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
S-palmitoylation is an important reversible protein post-translational modification in organisms. However, its role in fungi is uncertain. Here, we found the treatment of the rice false fungus Ustilaginoidea virens with S-palmitoylation inhibitor 2 BP resulted in a significant decrease in fungal virulence. Comprehensive identification of S-palmitoylation sites and proteins in U. virens revealed a total of 4,089 S-palmitoylation sites identified among 2,192 proteins and that S-palmitoylated proteins were involved in diverse biological processes. Among the five palmitoyltransferases, UvPfa3 and UvPfa4 were found to regulate the pathogenicity of U. virens. We then performed quantitative proteomic analysis of ∆UvPfa3 and ∆UvPfa4 mutants. Interestingly, S-palmitoylated proteins were significantly enriched in the mitogen-activated protein kinase and autophagy pathways, and MAP kinase UvSlt2 was confirmed to be an S-palmitoylated protein which was palmitoylated by UvPfa4. Mutations of S-palmitoylation sites in UvSlt2 resulted in significantly reduced fungal virulence and decreased kinase enzymatic activity and phosphorylation levels. Simulations of molecular dynamics demonstrated mutation of S-palmitoylation sites in UvSlt2 causing decreased hydrophobic solvent-accessible surface area, thereby weakening the bonding force with its substrate UvRlm1. Taken together, S-palmitoylation promotes U. virens virulence through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen.IMPORTANCES-palmitoylation is an important post-translational lipid modification of proteins. However, its role in fungi is uncertain. In this study, we found that S-palmitoylation promotes virulence of rice false smut fungus U. virens through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen. This is the first functional study to reveal the role of S-palmitoylation in fungal virulence.
Collapse
Affiliation(s)
- Yuhang Duan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Pingping Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Deyao Zhang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Lili Wang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Yuan Fang
- Anhui Province Key Laboratory of Crop Integrated Pest Management/College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hong Hu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Qiulu Mao
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolan Zhou
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Panpan Zhao
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xuechun Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Li Pan
- Life Science and Technology Center, China Seed Group Co,. Ltd, Wuhan, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management/College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Zheng X, Yang J, Wang Q, Yao P, Xiao J, Mao S, Zhang Z, Zeng Y, Zhu J, Hou J. Characterisation and evolution of the PRC2 complex and its functional analysis under various stress conditions in rice. Int J Biol Macromol 2024; 280:136124. [PMID: 39349087 DOI: 10.1016/j.ijbiomac.2024.136124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The polycomb repressive complex 2 (PRC2) is a chromatin-associated methyltransferase responsible for catalysing the trimethylation of H3K27, an inhibitory chromatin marker associated with gene silencing. This enzymatic activity is crucial for normal organismal development and the maintenance of gene expression patterns that preserve cellular identity, subsequently influencing plant growth and abiotic stress responses. Therefore, in this study, we investigated the evolutionary characteristics and functional roles of PRC2 in plants. We identified 209 PRC2 genes, including E(z), Su(z), Esc, and Nurf55 families, using 18 representative plant species and revealed that recent gene replication events have led to an expansion in the Nurf55 family, resulting in a greater number of members compared to the E(z), Su(z), and Esc families. Furthermore, protein structure and motif composition analyses highlighted the potential functional site regions within PRC2 members. In addition, we selected rice, a representative monocotyledonous plant, as the model species for food crops. Our findings revealed that SDG711, SDG718, and MSI1-5 genes were induced by abscisic acid (ABA) and/or methyl jasmonate (MeJA) hormones, suggesting that these genes play an important role in abiotic stress and disease resistance. Further experiments involving rice blast fungus treatments confirmed that the expression of SDG711 and MSI1-5 was induced by Magnaporthe oryzae strain GUY11. Multiple protein interaction assays revealed that the M. oryzae effector AvrPiz-t interacts with PRC2 core member SDG711 to increase H3K27me3 levels. Notably, inhibition of PRC2 or mutation of SDG711 enhanced rice resistance to M. oryzae. Collectively, these results provide new insights into PRC2 evolution in plants and its significant functions in rice.
Collapse
Affiliation(s)
- Xueke Zheng
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jieru Yang
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Qing Wang
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengxin Mao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Zhu
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Wang ZQ, Wang YF, Xu T, Li XY, Zhang S, Chang XQ, Yang XL, Meng S, Lv L. Transcriptomic Analysis of the CNL Gene Family in the Resistant Rice Cultivar IR28 in Response to Ustilaginoidea virens Infection. Int J Mol Sci 2024; 25:10655. [PMID: 39408984 PMCID: PMC11477166 DOI: 10.3390/ijms251910655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Rice false smut, caused by Ustilaginoidea virens, threatens rice production by reducing yields and contaminating grains with harmful ustiloxins. However, studies on resistance genes are scarce. In this study, the resistance level of IR28 (resistant cultivar) to U. virens was validated through artificial inoculation. Notably, a reactivation of resistance genes after transient down-regulation during the first 3 to 5 dpi was observed in IR28 compared to WX98 (susceptible cultivar). Cluster results of a principal component analysis and hierarchical cluster analysis of differentially expressed genes (DEGs) in the transcriptome exhibited longer expression patterns in the early infection phase of IR28, consistent with its sustained resistance response. Results of GO and KEGG enrichment analyses highlighted the suppression of immune pathways when the hyphae first invade stamen filaments at 5 dpi, but sustained up-regulated DEGs were linked to the 'Plant-pathogen interaction' (osa04626) pathway, notably disease-resistant protein RPM1 (K13457, CNLs, coil-coiled NLR). An analysis of CNLs identified 245 proteins containing Rx-CC and NB-ARC domains in the Oryza sativa Indica genome. Partial candidate CNLs were shown to exhibit up-regulation at both 1 and 5 dpi in IR28. This study provides insights into CNLs' responses to U. virens in IR28, potentially informing resistance mechanisms and genetic breeding targets.
Collapse
Affiliation(s)
- Zuo-Qian Wang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Yu-Fu Wang
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Xu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Xin-Yi Li
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Shu Zhang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Xiang-Qian Chang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Xiao-Lin Yang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Shuai Meng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Liang Lv
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| |
Collapse
|
9
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
10
|
Zhang Z, Zeng Y, Hou J, Li L. Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation. PLANTA 2024; 260:93. [PMID: 39264431 DOI: 10.1007/s00425-024-04518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis. The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein-protein and protein-DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Sunani SK, Koti PS, Sunitha NC, Choudhary M, Jeevan B, Anilkumar C, Raghu S, Gadratagi BG, Bag MK, Acharya LK, Ram D, Bashyal BM, Das Mohapatra S. Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense. PLANTA 2024; 260:92. [PMID: 39261328 DOI: 10.1007/s00425-024-04523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.
Collapse
Affiliation(s)
- Sunil Kumar Sunani
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
- ICAR-Indian Institute of Pulse Research (RS), Bhubaneswar, Odisha, India
| | - Prasanna S Koti
- University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
- ICAR-National Centre for Integrated Pest Management, New Delhi, India
| | - B Jeevan
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.
| | - S Raghu
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Manas Kumar Bag
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Dama Ram
- Department of Plant Pathology, Agriculture University, Jodhpur, Rajasthan, India
| | | | | |
Collapse
|
12
|
Duan Y, Wang Z, Fang Y, Pei Z, Hu H, Xu Q, Liu H, Chen X, Luo C, Huang J, Zheng L, Chen X. A secreted fungal laccase targets the receptor kinase OsSRF3 to inhibit OsBAK1-OsSRF3-mediated immunity in rice. Nat Commun 2024; 15:7891. [PMID: 39256395 PMCID: PMC11387757 DOI: 10.1038/s41467-024-52204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
The identification effector targets and characterization of their functions are crucial for understanding pathogen infection mechanisms and components of plant immunity. Here, we identify the effector UgsL, a ustilaginoidin synthetase with a key role in regulating virulence of the rice false smut fungus Ustilaginoidea virens. Heterologous expression of UgsL in rice (Oryza sativa) enhances plant susceptibility to multiple pathogens, and host-induced gene silencing of UgsL enhances plant resistance to U. virens, indicating that UgsL inhibits rice immunity. UgsL interacts with STRUBBELIG RECEPTOR KINASE 3 (OsSRF3). Genome editing and overexpression of OsSRF3 demonstrate that OsSRF3 plays a pivotal role in the resistance of rice to multiple pathogens. Remarkably, overexpressing OsSRF3 enhances resistance without adversely affecting plant growth or yield. We show that BRASSINOSTEROID RECEPTOR-ASSOCIATED KINASE 1 (OsBAK1) interacts with and phosphorylates OsSRF3 to activate pathogen-triggered immunity, inducing the mitogen-activated protein kinase cascade, a reactive oxygen species burst, callose deposition, and expression of defense-related genes. UgsL interferes with the phosphorylation of OsSRF3 by OsBAK1. Furthermore, UgsL mediates OsSRF3 degradation by facilitating its association with the ubiquitin-26S proteasome. Our results reveal that OsSRF3 positively regulates immunity in rice and that UgsL mediates its degradation, thereby inhibiting the activation of OsBAK1-OsSRF3-mediated immune pathways.
Collapse
Affiliation(s)
- Yuhang Duan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuan Fang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Zhangxin Pei
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Hong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiutao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Chaoxi Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
13
|
Hou J, Xiao H, Yao P, Ma X, Shi Q, Yang J, Hou H, Li L. Unveiling the mechanism of broad-spectrum blast resistance in rice: The collaborative role of transcription factor OsGRAS30 and histone deacetylase OsHDAC1. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1740-1756. [PMID: 38294722 PMCID: PMC11123394 DOI: 10.1111/pbi.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Jin Yang
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
14
|
Bajpai SK, Nisha, Pandita S, Bahadur A, Verma PC. Recent advancements in the role of histone acetylation dynamics to improve stress responses in plants. Mol Biol Rep 2024; 51:413. [PMID: 38472555 DOI: 10.1007/s11033-024-09300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Collapse
Affiliation(s)
- Sanjay Kumar Bajpai
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nisha
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shivali Pandita
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Anand Bahadur
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
15
|
Hudson A, Mullens A, Hind S, Jamann T, Balint‐Kurti P. Natural variation in the pattern-triggered immunity response in plants: Investigations, implications and applications. MOLECULAR PLANT PATHOLOGY 2024; 25:e13445. [PMID: 38528659 PMCID: PMC10963888 DOI: 10.1111/mpp.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
The pattern-triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe-derived molecules known as microbe- or pathogen-associated molecular patterns or molecules derived from compromised host cells called damage-associated molecular patterns. Membrane-localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Asher Hudson
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alexander Mullens
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sarah Hind
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Tiffany Jamann
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|