1
|
Bulychev AA, Cherkashin AA, Krupenina NA. Instant rerouting of photosynthetic electron transport to O 2 reduction after the plasma membrane excitation of Chara in the presence of methyl viologen. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109078. [PMID: 39226762 DOI: 10.1016/j.plaphy.2024.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
-Action potential (AP) of excitable plant cells is an important signaling event that can differentially alter physicochemical and physiological processes in various parts of the same cell. In giant cells of characean algae, the AP propagation has minor effect on photosynthetic electron transport in areas with high activity of plasmalemmal H+-pump but inhibits linear electron flow in regions featuring high passive H+/OH- conductance of the plasma membrane (PM). Uneven spatial distributions of local periplasmic and cytoplasmic pH facilitate the operation of distinct (CO2-dependent and O2-mediated) pathways of photoinduced electron flow, which presumably accounts for differential influence of AP on photosynthesis. The excitation of Chara australis cell in the presence of methyl viologen (MV), a redox mediator with the prooxidant action, provides a convenient model system to clarify the influence of voltage-dependent ion fluxes across PM on photosynthetic activity of chloroplasts. This study shows that permeation of MV to their target sites in chloroplasts is restricted by PM in resting cells, but MV easily passes through ionic channels opened during the PM depolarization. This gated permeation of MV gives rise to strong non-photochemical quenching, decrease in the effective quantum yield of linear electron flow, apparent O2 uptake, and, finally, the enhanced ROS production, as detected by the fluorescent probe dichlorofluorescein. Taken together, the results indicate that the AP generation in the presence of MV acts as trigger for instant redirection of photosynthetic linear electron flow from CO2-dependent route to the path of O2 reduction with the eventual formation of H2O2 as a dominant and most stable ROS form.
Collapse
|
2
|
Colpo A, Demaria S, Boldrini P, Baldisserotto C, Pancaldi S, Ferroni L. Ultrastructural organization of the thylakoid system during the afternoon relocation of the giant chloroplast in Selaginella martensii Spring (Lycopodiophyta). PROTOPLASMA 2024; 261:143-159. [PMID: 37612526 PMCID: PMC10784399 DOI: 10.1007/s00709-023-01888-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023]
Abstract
Within the ancient vascular plant lineage known as lycophytes, many Selaginella species contain only one giant chloroplast in the upper epidermal cells of the leaf. In deep-shade species, such as S. martensii, the chloroplast is cup-shaped and the thylakoid system differentiates into an upper lamellar region and a lower granal region (bizonoplast). In this report, we describe the ultrastructural changes occurring in the giant chloroplast hosted in the epidermal cells of S. martensii during the daily relocation of the organelle. The process occurs in up to ca. 40% of the microphylls without the plants being exposed to high-light flecks. The relocated chloroplast loses its cup shape: first, it flattens laterally toward the radial cell wall and then assumes a more globular shape. The loss of the conical cell shape, the side-by-side lateral positioning of vacuole and chloroplast, and the extensive rearrangement of the thylakoid system to only granal cooperate in limiting light absorption. While the cup-shaped chloroplast emphasizes the light-harvesting capacity in the morning, the relocated chloroplast is suggested to support the renewal of the thylakoid system during the afternoon, including the recovery of photosystem II (PSII) from photoinhibition. The giant chloroplast repositioning is part of a complex reversible reshaping of the whole epidermal cell.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy.
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy.
| |
Collapse
|
3
|
Aronsson H, Solymosi K. Diversification of Plastid Structure and Function in Land Plants. Methods Mol Biol 2024; 2776:63-88. [PMID: 38502498 DOI: 10.1007/978-1-0716-3726-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of morphological, ultrastructural, biochemical, and physiological differences. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization. In addition to basic plastid structural features, the most important plastid types, the newly characterized peculiar plastids, and future perspectives in plastid biology are also provided in this chapter.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
4
|
Bulychev AA, Strelets TS. Oscillations of chlorophyll fluorescence after plasma membrane excitation in Chara originate from nonuniform composition of signaling metabolites in the streaming cytoplasm. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149019. [PMID: 37924923 DOI: 10.1016/j.bbabio.2023.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Excitable cells of higher plants and characean algae respond to stressful stimuli by generating action potentials (AP) whose regulatory influence on chlorophyll (Chl) fluorescence and photosynthesis extends over tens of minutes. Unlike plant leaves where the efficiency of photosystem II reaction (YII) undergoes a separate reversible depression after an individual AP, characean algae exhibit long-lasting oscillations of YII after firing AP, provided that Chl fluorescence is measured on microscopic cell regions. Internodal cells of charophytes feature an extremely fast cytoplasmic streaming that stops immediately during the spike and recovers within ~10 min after AP. In this study a possibility was examined that multiple oscillations of YII and Chl fluorescence parameters (F', Fm') result from the combined influence of metabolic rearrangements in chloroplasts and the cyclosis cessation-recovery cycle induced by the Ca2+ influx during AP. It is shown that the AP-induced Fm' and YII oscillations disappear when the fluidic communications between the analyzed area (AOI) and surrounding cell regions are restricted or eliminated. The microfluidic signaling was manipulated in two ways: by narrowing the illuminated cell area and by arresting the cytoplasmic streaming with cytochalasin D (CD). The inhibition of Fm' and YII oscillations was not caused by the loss of cell excitability, since CD-treated cells retained the capacity of AP generation. The mechanism of AP-induced oscillations of YII and Chl fluorescence seems to involve the lateral microfluidic transport of signaling substances in combination with the distribution pattern of these substances that was enhanced during the period of streaming cessation.
Collapse
|
5
|
Colpo A, Molinari A, Boldrini P, Živčak M, Brestič M, Demaria S, Baldisserotto C, Pancaldi S, Ferroni L. Thylakoid membrane appression in the giant chloroplast of Selaginella martensii Spring: A lycophyte challenges grana paradigms in shade-adapted species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111833. [PMID: 37595894 DOI: 10.1016/j.plantsci.2023.111833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/17/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In vascular plants, the thylakoid architecture is dominated by the highly structured multiple membrane layers known as grana. The structural diversity of the thylakoid system among plant species is mainly determined by the adaptation to the growth light regime, according to a paradigm stating that shade-tolerant species are featured by a high membrane extension with an enhanced number of thylakoid layers per granum. In this study, the thylakoid system was analysed in Selaginella martensii Spring, a shade-adapted rainforest species belonging to lycophytes, a diminutive plant lineage, sister clade of all other vascular plants (euphyllophytes, including ferns and seed plants). The species is characterized by giant cup-shaped chloroplasts in the upper epidermis and, quantitatively less important, disk-shaped chloroplasts in the mesophyll and lower epidermis. The study aimed at the quantitative assessment of the thylakoid appression exploiting a combination of complementary methods, including electron microscopy, selective thylakoid solubilisation, electron paramagnetic resonance, and simultaneous analysis of fast chlorophyll a fluorescence and P700 redox state. With a chlorophyll a/b ratio of 2.6 and PSI/PSII ratio of 0.31, the plant confirmed two typical hallmarks of shade-adaptation. The morphometric analysis of electron micrographs revealed a 33% fraction of non-appressed thylakoid domains. However, contrasting with the structural paradigm of thylakoid shade-adaptation in angiosperms, S. martensii privileges the increase in the granum diameter in place of the increase in the number of layers building the granum. The very wide grana diameter, 727 nm on average, largely overcame the threshold of 500 nm currently hypothesized to allow an effective diffusion of long-range electron carriers. The fraction of non-appressed membranes based on the selective solubilisation of thylakoids with digitonin was 26%, lower than the morphometric determination, indicating the presence of non-appressed domains inaccessible to the detergent, most probably because of the high three-dimensional complexity of the thylakoid system in S. martensii. Particularly, strong irregularity of grana stacks is determined by assembling thylakoid layers of variable width that tend to slide apart from each other as the number of stacked layers increases.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marek Živčak
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| | - Marian Brestič
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy.
| |
Collapse
|
6
|
Kim YG, Park S, Kim SH. Centrifugation-Assisted Growth of Single-Crystalline Grains in Microcapsules. ACS NANO 2023; 17:2782-2791. [PMID: 36648203 DOI: 10.1021/acsnano.2c11071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloidal crystals have been tailored in a format of microspheres to use them as a building block to construct macroscopic photonic surfaces. However, the polycrystalline grains grown from the spherical surface usually exhibit low reflectivity. Although single-crystalline microspheres have been produced, it is difficult to control the crystal orientation. Here, we design spherical microcapsules with density anisotropy that contain single-crystalline grains along the heavy side. The microcapsules spontaneously align to have a heavy side down under the action of gravity and display a bright and uniform reflection color from the entire surface of the grains. Key to the success is the use of gentle centrifugal force to initiate nucleation and grow single-crystalline grains from the heavy side through depletion attraction. The microcapsules have density anisotropy due to the heterogeneity of the shell thickness, which causes them to self-align under centrifugation. At the same time, particles are accumulated on the heavy side, which produces many tiny grains on the heavy side immediately after the centrifugation. With controlled depletion attraction among particles, only a few grains survive during postincubation through Ostwald ripening, and one or a few giant single-crystalline grains are finally produced along the heavy side of each microcapsule.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| |
Collapse
|
7
|
Kim YG, Park S, Kim SH. Designing photonic microparticles with droplet microfluidics. Chem Commun (Camb) 2022; 58:10303-10328. [PMID: 36043863 DOI: 10.1039/d2cc03629k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photonic materials with a periodic change of refractive index show unique optical properties through wavelength-selective diffraction and modulation of the optical density of state, which is promising for various optical applications. In particular, photonic structures have been produced in the format of microparticles using emulsion templates to achieve advanced properties and applications beyond those of a conventional film format. Photonic microparticles can be used as a building block to construct macroscopic photonic materials, and the individual microparticles can serve as miniaturized photonic devices. Droplet microfluidics enables the production of emulsion drops with a controlled size, composition, and configuration that serve as the optimal confining geometry for designing photonic microparticles. This feature article reviews the recent progress and current state of the art in the field of photonic microparticles, covering all aspects of microfluidic production methods, microparticle geometries, optical properties, and applications. Two distinct bottom-up approaches based on colloidal assembly and liquid crystals are, respectively, discussed and compared.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Anatomical and Biochemical Traits Related to Blue Leaf Coloration of Selaginella uncinata. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1005449. [PMID: 35251556 PMCID: PMC8894045 DOI: 10.1155/2022/1005449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
Selaginella uncinata shows particularly rare blue leaves. Previous research has shown that structural interference by the cell wall of adaxial epidermal cells imparts blue coloration in leaves of S. uncinata; the objective of this study was to see whether anthocyanins might additionally contribute to this color, as changes in pH, and conjugation with metals and other flavonoids is also known to result in blue coloration in plants. We compared anatomical and biochemical traits of shade-grown (blue) S. uncinata leaves to high light (red) leaves of the same species and also to a non-blue (green) leaves of a congeneric S. kraussiana. By examining the anatomical structure, we found that the shape of adaxial epidermis of S. uncinata leaves was convex or lens-shaped on the lateral view and irregular circles with smooth embossment on the top view. These features were different from those of the abaxial and adaxial epidermis of S. kraussiana. We suspect that these structures increase the proportion of incident light entering the cell, deepening the leaf color, and therefore may be related to blue leaf color in S. uncinata. By examining biochemical traits, we found little difference in leaf pH value among the leaf types; all leaves contained several metal ions such as Mg, Fe, Mn, and copigments such as flavones. However, because there was no anthocyanin in blue S. uncinata leaves, we concluded that blue coloration in S. uncinata leaves is not caused by the three hypotheses of blue coloration: alkalization of the vacuole pH, metal chelation, or copigmentation with anthocyanins, but it may be related to the shape of the leaf adaxial epidermis.
Collapse
|
9
|
Bukhanov E, Shabanov AV, Volochaev MN, Pyatina SA. The Role of Periodic Structures in Light Harvesting. PLANTS 2021; 10:plants10091967. [PMID: 34579499 PMCID: PMC8473174 DOI: 10.3390/plants10091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022]
Abstract
The features of light propagation in plant leaves depend on the long-period ordering in chloroplasts and the spectral characteristics of pigments. This work demonstrates a method of determining the hidden ordered structure. Transmission spectra have been determined using transfer matrix method. A band gap was found in the visible spectral range. The effective refractive index and dispersion in the absorption spectrum area of chlorophyll were taken into account to show that the density of photon states increases, while the spectrum shifts towards the wavelength range of effective photosynthesis.
Collapse
Affiliation(s)
- Eugene Bukhanov
- Kirensky Institute of Physics FRC «KSC of SB RAS», Academgorodok str. 50/12, 660036 Krasnoyarsk, Russia; (A.V.S.); (M.N.V.)
- Federal Research Center «KSC of SB RAS», Academgorodok str. 50, 660036 Krasnoyarsk, Russia;
- Correspondence: ; Tel.: +7-913-554-3030
| | - Alexandr V. Shabanov
- Kirensky Institute of Physics FRC «KSC of SB RAS», Academgorodok str. 50/12, 660036 Krasnoyarsk, Russia; (A.V.S.); (M.N.V.)
| | - Mikhail N. Volochaev
- Kirensky Institute of Physics FRC «KSC of SB RAS», Academgorodok str. 50/12, 660036 Krasnoyarsk, Russia; (A.V.S.); (M.N.V.)
| | - Svetlana A. Pyatina
- Federal Research Center «KSC of SB RAS», Academgorodok str. 50, 660036 Krasnoyarsk, Russia;
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi av., 660041 Krasnoyarsk, Russia
| |
Collapse
|
10
|
Raven JA. Determinants, and implications, of the shape and size of thylakoids and cristae. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153342. [PMID: 33385618 DOI: 10.1016/j.jplph.2020.153342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Thylakoids are flattened sacs isolated from other membranes; cristae are attached to the rest of the inner mitochondrial membrane by the crista junction, but the crista lumen is separated from the intermembrane space. The shape of thylakoids and cristae involves membranes with small (5-30 nm) radii of curvature. While the mechanism of curvature is not entirely clear, it seems to be largely a function of Curt proteins in thylakoids and Mitochondrial Organising Site and Crista Organising Centre proteins and oligomeric FOF1 ATP synthase in cristae. A subordinate, or minimal, role is attributable to lipids with areas of their head group area greater (convex leaflet) or smaller (concave leaflet) than the area of the lipid tail; examples of the latter group are monogalactosyldiglyceride in thylakoids and cardiolipin in cristae. The volume per unit area on the lumen side of the membrane is less than that of the chloroplast stroma or cyanobacterial cytosol for thylakoids, and mitochondrial matrix for cristae. A low volume per unit area of thylakoids and cristae means a small lumen width that is the average of wider spaces between lipid parts of the membranes and the narrower gaps dominated by extra-membrane components of transmembrane proteins. These structural constraints have important implications for the movement of the electron carriers plastocyanin and cytochrome c6 (thylakoids) and cytochrome c (cristae) and hence the separation of the membrane-associated electron donors to, and electron acceptors from, these water-soluble electron carriers. The donor/acceptor pairs, are the cytochrome fb6Fenh complex and P700+ in thylakoids, and Complex III and Complex IV of cristae. The other energy flux parallel to the membranes is that of the proton motive force generated by redox-powered H+ pumps into the lumen to the proton motive force use in ATP synthesis by H+ flux from the lumen through the ATP synthase. For both the electron transport and proton motive force movement, concentration differences of reduced and oxidised electron carriers and protonated and deprotonated pH buffers are involved. The need for diffusion along a congested route of these energy transfer agents may limit the separation of sources and sinks parallel to the membranes of thylakoids and cristae.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; University of Technology, Sydney, Climate Change Cluster, Faculty of Science, Sydney, Ultimo, NSW, 2007, Australia; School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
11
|
Masters NJ, Lopez-Garcia M, Oulton R, Whitney HM. Characterization of chloroplast iridescence in Selaginella erythropus. J R Soc Interface 2018; 15:rsif.2018.0559. [PMID: 30487239 DOI: 10.1098/rsif.2018.0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022] Open
Abstract
Iridescence in shade-dwelling plants has previously been described in only a few plant groups, and even fewer where the structural colour is produced by intracellular structures. In contrast with other Selaginella species, this work reports the first example in the genus of structural colour originating from modified chloroplasts. Characterization of these structures determines that they form one-dimensional photonic multilayers. The Selaginella bizonoplasts present an analogous structure to recently reported Begonia iridoplasts; however, unlike Begonia species that produce iridoplasts, this Selaginella species was not previously described as iridescent. This therefore raises the possibility of widespread but unobserved and uncharacterized photonic structures in plants.
Collapse
Affiliation(s)
- Nathan J Masters
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin Lopez-Garcia
- Department of Nanophotonics, INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Ruth Oulton
- Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1TH, UK.,H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|