1
|
Luo S, Tetteh C, Song Z, Zhang C, Jin P, Hao X, Liu Y, Ge S, Chen J, Ye K, Wang K, Zhang T, Zhang H. Positive regulation of BBX11 by NAC053 confers stomatal and apoplastic immunity against bacterial infection in Arabidopsis. THE NEW PHYTOLOGIST 2025; 246:1816-1833. [PMID: 40110940 DOI: 10.1111/nph.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Stomatal immunity and apoplastic immunity are critical for preventing microbial phytopathogenesis. However, the specific regulatory mechanisms of these resistances remain unclear. In this study, a BBX11 transcription factor (TF) was identified in Arabidopsis and was found to participate in stomatal and apoplast immunity. Phenotypic, biochemical, and genetic analyses revealed that NAC053 contributed to Arabidopsis resistance against Pseudomonas syringae pv tomato DC3000 (Pst DC3000) by positively regulating BBX11. BBX11 TF that was expressed constitutively in guard cells acts as a positive regulator of plant defense against Pst DC3000 through the suppression of coronatine (COR)-induced stomatal reopening, mitigating the virulence of COR and alleviating COR-triggered systemic susceptibility in the apoplast. BBX11 was found to be involved in PTI responses induced by flg22, such as stomatal closure, reactive oxygen species accumulation, MAPK activation, and callose deposition, thereby enhancing disease resistance. Yeast one-hybrid screening identified NAC053 as a potential TF that interacted with the promoter of BBX11. NAC053 also positively regulated resistance to Pst DC3000. These findings underscore the significance of transcriptional activation of BBX11 by NAC053 in stomatal and apoplastic immunity against Pst DC3000, enhancing understanding of plant regulatory mechanisms in response to bacterial pathogens.
Collapse
Affiliation(s)
- Sheng Luo
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Charles Tetteh
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiqiang Song
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Cheng Zhang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Pinyuan Jin
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xingqian Hao
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Yingjun Liu
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Shating Ge
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jiao Chen
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Keke Ye
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Kang Wang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Zhang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Huajian Zhang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
2
|
Mahapatra K, Dwivedi S, Mukherjee A, Pradhan AA, Rao KV, Singh D, Bhagavatula L, Datta S. Interplay of light and abscisic acid signaling to modulate plant development. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:730-745. [PMID: 38660968 DOI: 10.1093/jxb/erae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Exogenous light cues and the phytohormone abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes regulation of germination and early seedling development, control of stomatal development and conductance, growth, and development of roots, buds, and branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors such as HY5, COP1, PIFs, and BBXs that integrate with ABA signaling components such as the PYL receptors and ABI5. In particular, ABI5 and PIF4 promoters are key 'hotspots' for integrating these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Ajar Anupam Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Kavuri Venkateswara Rao
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | | | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| |
Collapse
|
3
|
Cai XL, Zhang W, Yu H, Wen YQ, Feng JY. The Xanthomonas fragariae effector XopK suppresses stomatal immunity by perturbing abscisic acid accumulation and ABA-transciptional responses in strawberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109368. [PMID: 39721188 DOI: 10.1016/j.plaphy.2024.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Xanthomonas fragariae (Xaf) is the cause of strawberry crown dry cavity rot and strawberry leaf angular spots. Despite having a long evolutionary history with strawberries, the plant-pathogen interaction is poorly understood. Pathogenicity for most plant pathogens is mostly dependent on the type-III secretion system, which introduces virulence type III effectors (T3Es) into eukaryotic host cells. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. In this study, a core conserved secreted effector called Xanthomonas Outer Protein K (XopK) was identified in Xaf strain YL19. Transgenic strawberries expressing XopK exhibit increased susceptibility to Xaf YL19, and this was associated with weakened stomatal immunity. Additionally, abscisic acid (ABA) accumulation and signaling were significantly suppressed in XopK-OX strawberry plants. Overexpression of XopK also inhibited ABA- and methyl jasmonate (MeJA)-induced stomatal closure in strawberry leaves. Moreover, endogenous ABA is critical for Xaf-induced stomatal closure. These results suggested that Xaf YL19 uses XopK to suppress ABA signaling to disrupt stomatal closure allowing bacterial colonization for disease development.
Collapse
Affiliation(s)
- Xiao-Lin Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Wenyao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongwei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Singh D, Mitra O, Mahapatra K, Raghuvanshi AS, Kulkarni R, Datta S. REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins target ABSCISIC ACID INSENSITIVE 5 for degradation to promote early plant development. PLANT PHYSIOLOGY 2024; 196:2490-2503. [PMID: 39196775 DOI: 10.1093/plphys/kiae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 08/30/2024]
Abstract
REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) are WD-40 domain-containing proteins that have been extensively characterized for their role in UV-B signaling. However, the roles of the RUP proteins outside the canonical UV-signaling pathway are less known. Here, we identify that RUP1 and RUP2 play important roles in ABA signaling to regulate seed germination and early seedling development in Arabidopsis thaliana. Our protein interaction studies confirmed that RUP1 and RUP2 physically interact with ABA INSENSITIVE 5 (ABI5). In the presence of abscisic acid, rup1, rup2, and rup1rup2 exhibited reduced germination and seedling establishment compared with the wild type. Germination and seedling establishment in rup1rup2abi5-8 were similar to abi5-8, suggesting that RUP1 and RUP2 suppress ABA-mediated inhibition of germination and early seedling development in an ABI5-dependent manner. The DDB1-binding WD40 protein RUP2 promoted the ubiquitination of ABI5 to regulate its degradation. ABI5, in turn, establishes a negative feedback loop to inhibit the expression of RUP1/RUP2. ABI5 also inhibited the direct binding of ELONGATED HYPOCOTYL 5 (HY5) to the promoters of RUP1 and RUP2 under ABA. This study highlights the coordinated action of RUP1, RUP2, ABI5, and HY5 in regulating early plant development.
Collapse
Affiliation(s)
- Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Oihik Mitra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Kalyan Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Akshat Singh Raghuvanshi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Rucha Kulkarni
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
5
|
Chen X, Han C, Yang R, Wang X, Ma J, Wang Y. Influence of the transcription factor ABI5 on growth and development in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154316. [PMID: 39098091 DOI: 10.1016/j.jplph.2024.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.
Collapse
Affiliation(s)
- Xin Chen
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Changze Han
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Rongrong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Xinwen Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| |
Collapse
|
6
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Li Z, Zhang D, Liang X, Liang J. Receptor for Activated C Kinase 1 counteracts ABSCISIC ACID INSENSITIVE5-mediated inhibition of seed germination and post-germinative growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3932-3945. [PMID: 38602261 DOI: 10.1093/jxb/erae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
ABSCISIC ACID INSENSITIVE5 (ABI5), a key regulator of the abscisic acid (ABA) signalling pathway, plays a fundamental role in seed germination and post-germinative development. However, the molecular mechanism underlying the repression function of ABI5 remains to be elucidated. In this study, we demonstrate that the conserved eukaryotic WD40 repeat protein Receptor for Activated C Kinase 1 (RACK1) is a novel negative regulator of ABI5 in Arabidopsis. The RACK1 loss-of-function mutant is hypersensitive to ABA, while this phenotype is rescued by a mutation in ABI5. Moreover, overexpression of RACK1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes. RACK1 may also physically interact with ABI5 and facilitate its degradation. Furthermore, we found that RACK1 and the two substrate receptors CUL4-based E3 ligases (DWA1 and DWA2) function together to mediate the turnover of ABI5, thereby efficiently reducing ABA signalling in seed germination and post-germinative growth. In addition, molecular analyses demonstrated that ABI5 may bind to the promoter of RACK1 to repress its expression. Collectively, our findings suggest that RACK1 and ABI5 might form a feedback loop to regulate the homeostasis of ABA signalling in acute seed germination and early plant development.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dayan Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoju Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- College of Life Sciences, Fujian Agriculture and Forest University, Fuzhou 350002, China
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Li N, Xu Y, Lu Y. A Regulatory Mechanism on Pathways: Modulating Roles of MYC2 and BBX21 in the Flavonoid Network. PLANTS (BASEL, SWITZERLAND) 2024; 13:1156. [PMID: 38674565 PMCID: PMC11054080 DOI: 10.3390/plants13081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Genes of metabolic pathways are individually or collectively regulated, often via unclear mechanisms. The anthocyanin pathway, well known for its regulation by the MYB/bHLH/WDR (MBW) complex but less well understood in its connections to MYC2, BBX21, SPL9, PIF3, and HY5, is investigated here for its direct links to the regulators. We show that MYC2 can activate the structural genes of the anthocyanin pathway but also suppress them (except F3'H) in both Arabidopsis and Oryza when a local MBW complex is present. BBX21 or SPL9 can activate all or part of the structural genes, respectively, but the effects can be largely overwritten by the local MBW complex. HY5 primarily influences expressions of the early genes (CHS, CHI, and F3H). TF-TF relationships can be complex here: PIF3, BBX21, or SPL9 can mildly activate MYC2; MYC2 physically interacts with the bHLH (GL3) of the MBW complex and/or competes with strong actions of BBX21 to lessen a stimulus to the anthocyanin pathway. The dual role of MYC2 in regulating the anthocyanin pathway and a similar role of BBX21 in regulating BAN reveal a network-level mechanism, in which pathways are modulated locally and competing interactions between modulators may tone down strong environmental signals before they reach the network.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Shen T, Xu F, Chen D, Yan R, Wang Q, Li K, Zhang G, Ni L, Jiang M. A B-box transcription factor OsBBX17 regulates saline-alkaline tolerance through the MAPK cascade pathway in rice. THE NEW PHYTOLOGIST 2024; 241:2158-2175. [PMID: 38098211 DOI: 10.1111/nph.19480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 02/09/2024]
Abstract
Rice OsBBX17 encodes a B-box zinc finger transcription factor in which the N-terminal B-box structural domain interacts with OsMPK1. In addition, it directly binds to the G-box of OsHAK2 and OsHAK7 promoters and represses their transcription. Under saline-alkaline conditions, the expression of OsBBX17 was inhibited. Meanwhile, activation of the OsMPK1-mediated mitogen-activated protein kinase cascade pathway caused OsMPK1 to interact with OsBBX17 and phosphorylate OsBBX17 at the Thr-95 site. It reduced OsBBX17 DNA-binding activity and enhanced saline-alkaline tolerance by deregulating transcriptional repression of OsHAK2 and OsHAK7. Genetic assays showed that the osbbx17-KO had an excellent saline-alkaline tolerance, whereas the opposite was in OsBBX17-OE. In addition, overexpression of OsMPK1 significantly improved saline-alkaline tolerance, but knockout of OsMPK1 caused an increased sensitivity. Further overexpression of OsBBX17 in the osmpk1-KO caused extreme saline-alkaline sensitivity, even a quick death. OsBBX17 was validated in saline-alkaline tolerance from two independent aspects, transcriptional level and post-translational protein modification, unveiling a mechanistic framework by which OsMPK1-mediated phosphorylation of OsBBX17 regulates the transcription of OsHAK2 and OsHAK7 to enhance the Na+ /K+ homeostasis, which partially explains light on the molecular mechanisms of rice responds to saline-alkaline stress via B-box transcription factors for the genetic engineering of saline-alkaline tolerant crops.
Collapse
Affiliation(s)
- Tao Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengjuan Xu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Chen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Runjiao Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingwen Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Kaiyue Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gang Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Singh D, Datta S. BBX30/miP1b and BBX31/miP1a form a positive feedback loop with ABI5 to regulate ABA-mediated postgermination seedling growth arrest. THE NEW PHYTOLOGIST 2023; 238:1908-1923. [PMID: 36882897 DOI: 10.1111/nph.18866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 05/04/2023]
Abstract
In plants, the switch to autotrophic growth involves germination followed by postgermination seedling establishment. When environmental conditions are not favorable, the stress hormone abscisic acid (ABA) signals plants to postpone seedling establishment by inducing the expression of the transcription factor ABI5. The levels of ABI5 determine the efficiency of the ABA-mediated postgermination developmental growth arrest. The molecular mechanisms regulating the stability and activity of ABI5 during the transition to light are less known. Using genetic, molecular, and biochemical approach, we found that two B-box domain containing proteins BBX31 and BBX30 alongwith ABI5 inhibit postgermination seedling establishment in a partially interdependent manner. BBX31 and BBX30 are also characterized as microProteins miP1a and miP1b, respectively, based on their small size, single domain, and ability to interact with multidomain proteins. miP1a/BBX31 and miP1b/BBX30 physically interact with ABI5 to stabilize it and promote its binding to promoters of downstream genes. ABI5 reciprocally induces the expression of BBX30 and BBX31 by directly binding to their promoter. ABI5 and the two microProteins thereby form a positive feedback loop to promote ABA-mediated developmental arrest of seedlings.
Collapse
Affiliation(s)
- Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
11
|
Le QT, Truong HA, Nguyen DT, Yang S, Xiong L, Lee H. Enhanced growth performance of abi5 plants under high salt and nitrate is associated with reduced nitric oxide levels. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154000. [PMID: 37207503 DOI: 10.1016/j.jplph.2023.154000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Numerous environmental stresses have a significant impact on plant growth and development. By 2050, it is anticipated that high salinity will destroy more than fifty percent of the world's agricultural land. Understanding how plants react to the excessive use of nitrogen fertilizers and salt stress is crucial for enhancing crop yield. However, the effect of excessive nitrate treatment on plant development is disputed and poorly understood; so, we evaluated the effect of excessive nitrate supply and high salinity on abi5 plant growth performance. We demonstrated that abi5 plants are tolerant to the harmful environmental conditions of excessive nitrate and salt. abi5 plants have lower amounts of endogenous nitric oxide than Arabidopsis thaliana Columbia-0 plants due to their decreased nitrate reductase activity, caused by a decrease in the transcript level of NIA2, a gene encoding nitrate reductase. Nitric oxide appeared to have a critical role in reducing the salt stress tolerance of plants, which was diminished by an excess of nitrate. Discovering regulators such as ABI5 that can modulate nitrate reductase activity and comprehending the molecular activities of these regulators are crucial for the application of gene-editing techniques. This would result in the appropriate buildup of nitric oxide to increase the production of crops subjected to a variety of environmental stresses.
Collapse
Affiliation(s)
- Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Hai An Truong
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Dinh Thanh Nguyen
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Seonyoung Yang
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
12
|
Lei L, Pan H, Hu HY, Fan XW, Wu ZB, Li YZ. Characterization of ZmPMP3g function in drought tolerance of maize. Sci Rep 2023; 13:7375. [PMID: 37147346 PMCID: PMC10163268 DOI: 10.1038/s41598-023-32989-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023] Open
Abstract
The genes enconding proteins containing plasma membrane proteolipid 3 (PMP3) domain are responsive to abiotic stresses, but their functions in maize drought tolerance remain largely unknown. In this study, the transgenic maize lines overexpressing maize ZmPMP3g gene were featured by enhanced drought tolerance; increases in total root length, activities of superoxide dismutase and catalase, and leaf water content; and decreases in leaf water potential, levels of O2-·and H2O2, and malondialdehyde content under drought. Under treatments with foliar spraying with abscisic acid (ABA), drought tolerance of both transgenic line Y7-1 overexpressing ZmPMP3g and wild type Ye478 was enhanced, of which Y7-1 showed an increased endogenous ABA and decreased endogenous gibberellin (GA) 1 (significantly) and GA3 (very slightly but not significantly) and Ye478 had a relatively lower ABA and no changes in GA1 and GA3. ZmPMP3g overexpression in Y7-1 affected the expression of multiple key transcription factor genes in ABA-dependent and -independent drought signaling pathways. These results indicate that ZmPMP3g overexpression plays a role in maize drought tolerance by harmonizing ABA-GA1-GA3 homeostasis/balance, improving root growth, enhancing antioxidant capacity, maintaining membrane lipid integrity, and regulating intracellular osmotic pressure. A working model on ABA-GA-ZmPMP3g was proposed and discussed.
Collapse
Affiliation(s)
- Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Hong Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Hai-Yang Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhen-Bo Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
13
|
Li Q, Zhou L, Chen Y, Xiao N, Zhang D, Zhang M, Wang W, Zhang C, Zhang A, Li H, Chen J, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. THE PLANT CELL 2022; 34:4293-4312. [PMID: 35929789 PMCID: PMC9614506 DOI: 10.1093/plcell/koac244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/01/2022] [Indexed: 06/10/2023]
Abstract
Stomata are crucial valves coordinating the fixation of carbon dioxide by photosynthesis and water loss through leaf transpiration. Phytochrome interacting factors (PIFs) are negative regulators of red light responses that belong to the basic helix-loop-helix family of transcription factors. Here, we show that the rice (Oryza sativa) PIF family gene OsPIL15 acts as a negative regulator of stomatal aperture to control transpiration in rice. OsPIL15 reduces stomatal aperture by activating rice ABSCISIC ACID INSENSITIVE 5 (OsABI5), which encodes a critical positive regulator of ABSCISIC ACID (ABA) signaling in rice. Moreover, OsPIL15 interacts with the NIGT1/HRS1/HHO family transcription factor rice HRS1 HOMOLOG 3 (OsHHO3) to possibly enhance the regulation of stomatal aperture. Notably, we discovered that the maize (Zea mays) PIF family genes ZmPIF1 and ZmPIF3, which are homologous to OsPIL15, are also involved in the regulation of stomatal aperture in maize, indicating that PIF-mediated regulation of stomatal aperture may be conserved in the plant lineage. Our findings explain the molecular mechanism by which PIFs play a role in red-light-mediated stomatal opening, and demonstrate that PIFs regulate stomatal aperture by coordinating the red light and ABA signaling pathways.
Collapse
Affiliation(s)
| | | | - Yanan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Anning Zhang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Hua Li
- Hezhou Academy of Agricultural Sciences, Hezhou 542813, China
| | - Jianmin Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | |
Collapse
|
14
|
Zhao H, Zhang Y, Zheng Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5. FRONTIERS IN PLANT SCIENCE 2022; 13:1000803. [PMID: 36092418 PMCID: PMC9449724 DOI: 10.3389/fpls.2022.1000803] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Seed germination is precisely controlled by a variety of signals, among which light signals and the phytohormones abscisic acid (ABA) and gibberellin (GA) play crucial roles. New findings have greatly increased our understanding of the mechanisms by which these three signals regulate seed germination and the close connections between them. Although much work has been devoted to ABA, GA, and light signal interactions, there is still no systematic description of their combination, especially in seed germination. In this review, we integrate ABA, GA, and light signaling in seed germination through the direct and indirect regulation of ABSCISIC ACID INSENSITIVE5 (ABI5), the core transcription factor that represses seed germination in ABA signaling, into our current understanding of the regulatory mechanism of seed germination.
Collapse
Affiliation(s)
- Hongyun Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, China
| | - Yamei Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, China
| |
Collapse
|
15
|
Li Z, Luo X, Wang L, Shu K. ABSCISIC ACID INSENSITIVE 5 mediates light-ABA/gibberellin crosstalk networks during seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4674-4682. [PMID: 35522989 DOI: 10.1093/jxb/erac200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Appropriate timing of seed germination is crucial for plant survival and has important implications for agricultural production. Timely germination relies on harmonious interactions between endogenous developmental signals, especially abscisic acid (ABA) and gibberellins (GAs), and environmental cues such as light. Recently, a series of investigations of a three-way crosstalk between phytochromes, ABA, and GAs in the regulation of seed germination demonstrated that the transcription factor ABSCISIC ACID INSENSITIVE 5 (ABI5) is a central mediator in the light-ABA/GA cascades. Here, we review current knowledge of ABI5 as a key player in light-, ABA-, and GA-signaling pathways that precisely control seed germination. We highlight recent advances in ABI5-related studies, focusing on the regulation of seed germination, which is strictly controlled at both the transcriptional and the protein levels by numerous light-regulated factors. We further discuss the components of ABA and GA signaling pathways that could regulate ABI5 during seed germination, including transcription factors, E3 ligases, protein kinases, and phosphatases. The precise molecular mechanisms by which ABI5 mediates ABA-GA antagonistic crosstalk during seed germination are also discussed. Finally, some potential research hotspots underlying ABI5-mediated seed germination regulatory networks are proposed.
Collapse
Affiliation(s)
- Zenglin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| |
Collapse
|
16
|
Chen Q, Wang W, Zhang Y, Zhan Q, Liu K, Botella JR, Bai L, Song C. Abscisic acid-induced cytoplasmic translocation of constitutive photomorphogenic 1 enhances reactive oxygen species accumulation through the HY5-ABI5 pathway to modulate seed germination. PLANT, CELL & ENVIRONMENT 2022; 45:1474-1489. [PMID: 35199338 PMCID: PMC9311139 DOI: 10.1111/pce.14298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/05/2022] [Indexed: 05/13/2023]
Abstract
Seed germination is a physiological process regulated by multiple factors. Abscisic acid (ABA) can inhibit seed germination to improve seedling survival under conditions of abiotic stress, and this process is often regulated by light signals. Constitutive photomorphogenic 1 (COP1) is an upstream core repressor of light signals and is involved in several ABA responses. Here, we demonstrate that COP1 is a negative regulator of the ABA-mediated inhibition of seed germination. Disruption of COP1 enhanced Arabidopsis seed sensitivity to ABA and increased reactive oxygen species (ROS) levels. In seeds, ABA induced the translocation of COP1 to the cytoplasm, resulting in enhanced ABA-induced ROS levels. Genetic evidence indicated that HY5 and ABI5 act downstream of COP1 in the ABA-mediated inhibition of seed germination. ABA-induced COP1 cytoplasmic localization increased HY5 and ABI5 protein levels in the nucleus, leading to increased expression of ABI5 target genes and ROS levels in seeds. Together, our results reveal that ABA-induced cytoplasmic translocation of COP1 activates the HY5-ABI5 pathway to promote the expression of ABA-responsive genes and the accumulation of ROS during ABA-mediated inhibition of seed germination. These findings enhance the role of COP1 in the ABA signal transduction pathway.
Collapse
Affiliation(s)
- Qing‐Bin Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Jing Wang
- Department of Biology and Food ScienceShangqiu Normal UniversityShangqiuChina
| | - Yue Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Qi‐Di Zhan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Kang Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ling Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
17
|
Liu Y, Cheng H, Cheng P, Wang C, Li J, Liu Y, Song A, Chen S, Chen F, Wang L, Jiang J. The BBX gene CmBBX22 negatively regulates drought stress tolerance in chrysanthemum. HORTICULTURE RESEARCH 2022; 9:uhac181. [PMID: 36338842 PMCID: PMC9630972 DOI: 10.1093/hr/uhac181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/07/2022] [Indexed: 05/13/2023]
Abstract
BBX transcription factors play vital roles in plant growth, development, and stress responses. Although BBX proteins have been studied in great detail in the model plant Arabidopsis, their roles in crop plants such as chrysanthemum are still largely uninvestigated. Here, we cloned CmBBX22 and further determined the function of CmBBX22 in response to drought treatment. Subcellular localization and transactivation assay analyses revealed that CmBBX22 was localized in the nucleus and possessed transactivation activity. Overexpression of CmBBX22 in chrysanthemum was found to reduce plant drought tolerance, whereas expression of the chimeric repressor CmBBX22-SRDX was found to promote a higher drought tolerance than that shown by wild-type plants, indicating that CmBBX22 negatively regulates drought tolerance in chrysanthemum. Transcriptome analysis and physiological measurements indicated the potential involvement of the CmBBX22-mediated ABA response, stomatal conductance, and antioxidant responses in the negative regulation of drought tolerance in chrysanthemum. Based on the findings of this study, we were thus able to establish the mechanisms whereby the transcriptional activator CmBBX22 negatively regulates drought tolerance in chrysanthemum via the regulation of the abscisic acid response, stomatal conductance, and antioxidant responses.
Collapse
Affiliation(s)
| | | | - Peilei Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmeng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
18
|
Gómez-Ocampo G, Ploschuk EL, Mantese A, Crocco CD, Botto JF. BBX21 reduces abscisic acid sensitivity, mesophyll conductance and chloroplast electron transport capacity to increase photosynthesis and water use efficiency in potato plants cultivated under moderated drought. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1131-1144. [PMID: 34606658 DOI: 10.1111/tpj.15499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/11/2021] [Indexed: 05/14/2023]
Abstract
The B-box (BBX) proteins are zinc-finger transcription factors with a key role in growth and developmental regulatory networks mediated by light. AtBBX21 overexpressing (BBX21-OE) potato (Solanum tuberosum) plants, cultivated in optimal water conditions, have a higher photosynthesis rate and stomatal conductance without penalty in water use efficiency (WUE) and with a higher tuber yield. In this work, we cultivated potato plants in two water regimes: 100 and 35% field capacity of water restriction that imposed leaf water potentials between -0.3 and -1.2 MPa for vegetative and tuber growth during 14 or 28 days, respectively. We found that 42-day-old plants of BBX21-OE were more tolerant to water restriction with higher levels of chlorophylls and tuber yield than wild-type spunta (WT) plants. In addition, the BBX21-OE lines showed higher photosynthesis rates and WUE under water restriction during the morning. Mechanistically, we found that BBX21-OE lines were more tolerant to moderated drought by enhancing mesophyll conductance (gm ) and maximum capacity of electron transport (Jmax ), and by reducing abscisic acid (ABA) sensitivity in plant tissues. By RNA-seq analysis, we found 204 genes whose expression decreased by drought in WT plants and expressed independently of the water condition in BBX21-OE lines as SAP12, MYB73, EGYP1, TIP2-1 and DREB2A, and expressions were confirmed by quantitative polymerase chain reaction. These results suggest that BBX21 interplays with the ABA and growth signaling networks, improving the photosynthetic behavior in suboptimal water conditions with an increase in potato tuber yield.
Collapse
Affiliation(s)
- Gabriel Gómez-Ocampo
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Edmundo L Ploschuk
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Anita Mantese
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Carlos D Crocco
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Javier F Botto
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
19
|
Updates on the Role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA Signaling in Different Developmental Stages in Plants. Cells 2021; 10:cells10081996. [PMID: 34440762 PMCID: PMC8394461 DOI: 10.3390/cells10081996] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
The core abscisic acid (ABA) signaling pathway consists of receptors, phosphatases, kinases and transcription factors, among them ABA INSENSITIVE 5 (ABI5) and ABRE BINDING FACTORs/ABRE-BINDING PROTEINs (ABFs/AREBs), which belong to the BASIC LEUCINE ZIPPER (bZIP) family and control expression of stress-responsive genes. ABI5 is mostly active in seeds and prevents germination and post-germinative growth under unfavorable conditions. The activity of ABI5 is controlled at transcriptional and protein levels, depending on numerous regulators, including components of other phytohormonal pathways. ABFs/AREBs act redundantly in regulating genes that control physiological processes in response to stress during vegetative growth. In this review, we focus on recent reports regarding ABI5 and ABFs/AREBs functions during abiotic stress responses, which seem to be partially overlapping and not restricted to one developmental stage in Arabidopsis and other species. Moreover, we point out that ABI5 and ABFs/AREBs play a crucial role in the core ABA pathway’s feedback regulation. In this review, we also discuss increased stress tolerance of transgenic plants overexpressing genes encoding ABA-dependent bZIPs. Taken together, we show that ABI5 and ABFs/AREBs are crucial ABA-dependent transcription factors regulating processes essential for plant adaptation to stress at different developmental stages.
Collapse
|
20
|
Cui W, Wang S, Han K, Zheng E, Ji M, Chen B, Wang X, Chen J, Yan F. Ferredoxin 1 is downregulated by the accumulation of abscisic acid in an ABI5-dependent manner to facilitate rice stripe virus infection in Nicotiana benthamiana and rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1183-1197. [PMID: 34153146 DOI: 10.1111/tpj.15377] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/14/2021] [Indexed: 05/07/2023]
Abstract
Ferredoxin 1 (FD1) accepts and distributes electrons in the electron transfer chain of plants. Its expression is universally downregulated by viruses and its roles in plant immunity have been brought into focus over the past decade. However, the mechanism by which viruses regulate FD1 remains to be defined. In a previous report, we found that the expression of Nicotiana benthamiana FD1 (NbFD1) was downregulated following infection with potato virus X (PVX) and that NbFD1 regulates callose deposition at plasmodesmata to play a role in defense against PVX infection. We now report that NbFD1 is downregulated by rice stripe virus (RSV) infection and that silencing of NbFD1 also facilitates RSV infection, while viral infection was inhibited in a transgenic line overexpressing NbFD1, indicating that NbFD1 also functions in defense against RSV infection. Next, a RSV-derived small interfering RNA was identified that contributes to the downregulation of FD1 transcripts. Further analysis showed that the abscisic acid (ABA) which accumulates in RSV-infected plants also represses NbFD1 transcription. It does this by stimulating expression of ABA insensitive 5 (ABI5), which binds the ABA response element motifs in the NbFD1 promoter, resulting in negative regulation. Regulation of FD1 by ABA was also confirmed in RSV-infected plants of the natural host rice. The results therefore suggest a mechanism by which virus regulates chloroplast-related genes to suppress their defense roles.
Collapse
Affiliation(s)
- Weijun Cui
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Nebraska, NE 68583, USA
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ersong Zheng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengfei Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Binghua Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuming Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
21
|
Job N, Datta S. PIF3/HY5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. THE NEW PHYTOLOGIST 2021; 230:190-204. [PMID: 33330975 DOI: 10.1111/nph.17149] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Greening of cotyledons during de-etiolation is critical for harvesting light energy and sustaining plant growth. PIF3 and HY5 antagonistically regulate protochlorophyllide synthesis in the dark. However, the mechanism by which the PIF3/HY5 module regulates genes involved in protochlorophyllide synthesis is not clear. Using genetic, molecular and biochemical techniques we identified that the B-BOX protein BBX11 acts directly downstream of PIF3 and HY5 to transcriptionally modulate genes involved in protochlorophyllide synthesis. Dark-grown bbx11 and 35S:BBX11 seedlings exhibit an enhanced and reduced ability to green, respectively, when exposed to light. Transcript levels of HEMA1 and CHLH are upregulated in 35S:BBX11 seedlings that accumulate high levels of protochlorophyllide in the dark and undergo photobleaching upon illumination. PIF3 inhibits BBX11 in the dark by directly binding to its promoter. bbx11 suppresses the cotyledon greening defect of pif3 after prolonged dark, indicating that the PIF3-mediated regulation of greening is dependent on BBX11. The enhanced greening of hy5 is also suppressed in hy5 lines overexpressing BBX11. In light, HY5 directly binds to the promoter of BBX11 and activates its expression to regulate BBX11-mediated hypocotyl inhibition. We show that a PIF3/HY5 module regulates BBX11 expression in opposite ways to optimise protochlorophyllide accumulation in the dark and promote photomorphogenesis in light.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
22
|
Bohutínská M, Alston M, Monnahan P, Mandáková T, Bray S, Paajanen P, Kolář F, Yant L. Novelty and convergence in adaptation to whole genome duplication. Mol Biol Evol 2021; 38:3910-3924. [PMID: 33783509 PMCID: PMC8382928 DOI: 10.1093/molbev/msab096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimised in an autotetraploid (within-species polyploid) to avoid mis-segregation. Here we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 million years diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodelling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organisation, stress signalling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Mark Alston
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Patrick Monnahan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Terezie Mandáková
- CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Sian Bray
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, UK.,School of Biosciences University of Nottingham, Nottingham, UK
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Levi Yant
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, UK.,School of Life Sciences University of Nottingham, Nottingham, UK
| |
Collapse
|
23
|
An JP, Zhang XW, Liu YJ, Zhang JC, Wang XF, You CX, Hao YJ. MdABI5 works with its interaction partners to regulate abscisic acid-mediated leaf senescence in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1566-1581. [PMID: 33314379 DOI: 10.1111/tpj.15132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/08/2020] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA) induces chlorophyll degradation and leaf senescence; however, the molecular mechanism remains poorly understood, especially in woody plants. In this study, we found that MdABI5 plays an essential role in the regulation of ABA-triggered leaf senescence in Malus domestica (apple). Through yeast screening, three transcription factors, MdBBX22, MdWRKY40 and MdbZIP44, were found to interact directly with MdABI5 in vitro and in vivo. Physiological and biochemical assays showed that MdBBX22 delayed leaf senescence in two pathways. First, MdBBX22 interacted with MdABI5 to inhibit the transcriptional activity of MdABI5 on the chlorophyll catabolic genes MdNYE1 and MdNYC1, thus negatively regulating chlorophyll degradation and leaf senescence. Second, MdBBX22 interacted with MdHY5 to interfere with the transcriptional activation of MdHY5 on MdABI5, thereby inhibiting the expression of MdABI5, which also contributed to the delay of leaf senescence. MdWRKY40 and MdbZIP44 were identified as positive regulators of leaf senescence. They accelerated MdABI5-promoted leaf senescence through the same regulatory pathways, i.e., interacting with MdABI5 to enhance the transcriptional activity of MdABI5 on MdNYE1 and MdNYC1. Taken together, our results suggest that MdABI5 works with its positive or negative interaction partners to regulate ABA-mediated leaf senescence in apple, in which it acts as a core regulator. The antagonistic regulation pathways ensure that plants respond to external stresses flexibly and efficiently. Our results provide a concept for further study on the regulation mechanisms of leaf senescence.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ya-Jing Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
24
|
Bulgakov VP, Koren OG. Basic Protein Modules Combining Abscisic Acid and Light Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:808960. [PMID: 35046987 PMCID: PMC8762054 DOI: 10.3389/fpls.2021.808960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 05/02/2023]
Abstract
It is generally accepted that plants use the complex signaling system regulated by light and abscisic acid (ABA) signaling components to optimize growth and development in different situations. The role of ABA-light interactions is evident in the coupling of stress defense reactions with seed germination and root development, maintaining of stem cell identity and stem cell specification, stem elongation and leaf development, flowering and fruit formation, senescence, and shade avoidance. All these processes are regulated jointly by the ABA-light signaling system. Although a lot of work has been devoted to ABA-light signal interactions, there is still no systematic description of central signaling components and protein modules, which jointly regulate plant development. New data have emerged to promote understanding of how ABA and light signals are integrated at the molecular level, representing an extensively growing area of research. This work is intended to fill existing gaps by using literature data combined with bioinformatics analysis.
Collapse
|
25
|
Jia P, Xing L, Zhang C, Zhang D, Ma J, Zhao C, Han M, Ren X, An N. MdKNOX19, a class II knotted-like transcription factor of apple, plays roles in ABA signalling/sensitivity by targeting ABI5 during organ development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110701. [PMID: 33288014 DOI: 10.1016/j.plantsci.2020.110701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 05/10/2023]
Abstract
The ABI5 transcription factor, which is a core component of the ABA signaling pathway, affects various plant processes, including seed development and germination and responses to environmental cues. The knotted1-like homeobox (KNOX) transcription factor has crucial functions related to plant development, including the regulation of various hormones. In this study, an ABA-responsive KNOX gene, MdKNOX19, was identified in apple (Malus domestica). The overexpression of MdKNOX19 increased the ABA sensitivity of apple calli, resulting in a dramatic up-regulation in the transcription of the Arabidopsis ABI5-like MdABI5 gene. Additionally, MdKNOX19 overexpression in Micro-Tom adversely affected fruit size and seed yield as well as enhanced ABA sensitivity and up-regulated SlABI5 transcription during seed germination and early seedling development. An examination of MdKNOX19-overexpressing Arabidopsis plants also revealed severe defects in seed development and up-regulated expression of ABA-responsive genes. Furthermore, we further confirmed that MdKNOX19 binds directly to the MdABI5 promoter to activate expression. Our findings suggest MdKNOX19 is a positive regulator of ABI5 expression, and the conserved module MdKNOX19-MdABI5-ABA may contribute to organ development.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Xu Y, Zhao X, Aiwaili P, Mu X, Zhao M, Zhao J, Cheng L, Ma C, Gao J, Hong B. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1783-1795. [PMID: 32488968 PMCID: PMC7496117 DOI: 10.1111/tpj.14863] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 05/09/2023]
Abstract
Drought is an environmental factor that can severely influence plant development and distribution, and greatly affect the yield and economic value of crops. We characterized CmBBX19, a BBX family subgroup IV member gene, from the transcriptome database of Chrysanthemum morifolium in response to drought stress. Drought stress and ABA treatments downregulated the expression of CmBBX19. We generated CmBBX19-overexpressing (CmBBX19-OX) lines and CmBBX19-suppressing lines (CmBBX19-RNAi), and found that suppressed expression of CmBBX19 led to enhanced drought tolerance compared with the wild-type (WT) controls, while CmBBX19-OX lines exhibited reduced drought tolerance. Downstream gene analysis showed that CmBBX19 modulates drought tolerance mainly through inducing changes in the expression of ABA-dependent pathway genes, including protective protein, redox balance and cell wall biogenesis genes, such as responsive to ABA 18, peroxidase 12, and cellulose synthase-like protein G2. Moreover, CmBBX19 was shown to interact with CmABF3, a master ABA signaling component, to suppress expression of these downstream genes. We conclude that BBX19-ABF3 module functions in the regulation of drought tolerance of chrysanthemum through an ABA-dependent pathway.
Collapse
Affiliation(s)
- Yanjie Xu
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Xin Zhao
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Palinuer Aiwaili
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Xianying Mu
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Meng Zhao
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Jian Zhao
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Lina Cheng
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Chao Ma
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Junping Gao
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Bo Hong
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| |
Collapse
|
27
|
Yadukrishnan P, Rahul PV, Ravindran N, Bursch K, Johansson H, Datta S. CONSTITUTIVELY PHOTOMORPHOGENIC1 promotes ABA-mediated inhibition of post-germination seedling establishment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:481-496. [PMID: 32436306 DOI: 10.1111/tpj.14844] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
Under acute stress conditions, precocious seedling development may result in the premature death of young seedlings, before they switch to autotrophic growth. The phytohormone abscisic acid (ABA) inhibits seed germination and post-germination seedling establishment under unfavorable conditions. Various environmental signals interact with the ABA pathway to optimize these early developmental events under stress. Here, we show that light availability critically influences ABA sensitivity during early seedling development. In dark conditions, the ABA-mediated inhibition of post-germination seedling establishment is strongly enhanced. COP1, a central regulator of seedling development in the dark, is necessary for this enhanced post-germination ABA sensitivity in darkness. Despite their slower germination, cop1 seedlings establish faster than wild type in the presence of ABA in both light and dark. PHY and CRY photoreceptors that inhibit COP1 activity in light modulate ABA-mediated inhibition of seedling establishment in light. Genetically, COP1 acts downstream to ABI5, a key transcriptional regulator of ABA signaling, and does not influence the transcriptional and protein levels of ABI5 during the early post-germination stages. COP1 promotes post-germination growth arrest independent of the antagonistic interaction between ABA and cytokinin signaling pathways. COP1 facilitates the binding of ABI5 on its target promoters and the ABA-mediated upregulation of these target genes is reduced in cop1-4. Together, our results suggest that COP1 positively regulates ABA signaling to inhibit post-germination seedling establishment under stress.
Collapse
Affiliation(s)
- Premachandran Yadukrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | - Puthan Valappil Rahul
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | - Nevedha Ravindran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | - Katharina Bursch
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Univeristät Berlin, Albrecht-Thaer-Weg 6, Berlin, D-14195, Germany
| | - Henrik Johansson
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Univeristät Berlin, Albrecht-Thaer-Weg 6, Berlin, D-14195, Germany
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| |
Collapse
|
28
|
Ruibal C, Castro A, Fleitas AL, Quezada J, Quero G, Vidal S. A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:845. [PMID: 32636864 PMCID: PMC7317016 DOI: 10.3389/fpls.2020.00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
COR413 genes belong to a poorly characterized group of plant-specific cold-regulated genes initially identified as part of the transcriptional activation machinery of plants during cold acclimation. They encode multispanning transmembrane proteins predicted to target the plasma membrane or the chloroplast inner membrane. Despite being ubiquitous throughout the plant kingdom, little is known about their biological function. In this study, we used reverse genetics to investigate the relevance of a predicted chloroplast localized COR413 protein (PpCOR413im) from the moss Physcomitrella patens in developmental and abiotic stress responses. Expression of PpCOR413im was strongly induced by abscisic acid (ABA) and by various environmental stimuli, including low temperature, hyperosmosis, salinity and high light. In vivo subcellular localization of PpCOR413im-GFP fusion protein revealed that this protein is localized in chloroplasts, confirming the in silico predictions. Loss-of-function mutants of PpCOR413im exhibited growth and developmental alterations such as growth retardation, reduced caulonema formation and hypersensitivity to ABA. Mutants also displayed altered photochemistry under various abiotic stresses, including dehydration and low temperature, and exhibited a dramatic growth inhibition upon exposure to high light. Disruption of PpCOR413im also caused altered chloroplast ultrastructure, increased ROS accumulation, and enhanced starch and sucrose levels under high light or after ABA treatment. In addition, loss of PpCOR413im affected both nuclear and chloroplast gene expression in response to ABA and high light, suggesting a role for this gene downstream of ABA in the regulation of growth and environmental stress responses. Developmental alterations exhibited by PpCOR413im knockout mutants had remarkable similarities to those exhibited by hxk1, a mutant lacking a major chloroplastic hexokinase, an enzyme involved in energy homeostasis. Based on these findings, we propose that PpCOR413im is involved in coordinating energy metabolism with ABA-mediated growth and developmental responses.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jorge Quezada
- Unidad de Biotecnología Vegetal, Instituto de Biología Molecular y Biotecnología, Carrera de Biología – Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
29
|
López-García CM, Ruíz-Herrera LF, López-Bucio JS, Huerta-Venegas PI, Peña-Uribe CA, de la Cruz HR, López-Bucio J. ALTERED MERISTEM PROGRAM 1 promotes growth and biomass accumulation influencing guard cell aperture and photosynthetic efficiency in Arabidopsis. PROTOPLASMA 2020; 257:573-582. [PMID: 31823020 DOI: 10.1007/s00709-019-01458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
ALTERED MERISTEM PROGRAM 1 (AMP1) encodes a putative glutamate-carboxypeptidase important for plant growth and development. In this study, by comparing the growth of Arabidopsis wild-type, amp1-10 and amp1-13 mutants, and AMP1-GFP/OX2- and AMP1-GFP/OX7-overexpressing seedlings in vitro and in soil, we uncover the role of AMP1 in biomass accumulation in Arabidopsis. AMP1-overexpressing plants had longer primary roots and increased lateral root number and density than the WT, which correlated with improved root, shoot, and total biomass accumulation. AMP1-overexpressing seedlings had an enhanced rate of growth of primary roots, and accordingly, sucrose supplementation restored primary root growth and promoted lateral root formation in amp1 mutants, while reproductive development, fruit size, and seed content were also modified according to disruption or overexpression of AMP1. We further found that AMP1 plays an important role for stomatal development, guard cell functioning, and carbon assimilation. These data help explain the pleiotropic functions of AMP1 in both root and shoot system development, possibly acting in a sugar-dependent manner for regulation of root architecture, biomass accumulation, and seed production.
Collapse
Affiliation(s)
- Claudia Marina López-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- CONACYT, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Pedro Iván Huerta-Venegas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - César Arturo Peña-Uribe
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio A1´, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
30
|
Wang Z, Feng R, Zhang X, Su Z, Wei J, Liu J. Characterization of the Hippophae rhamnoides WRKY gene family and functional analysis of the role of the HrWRKY21 gene in resistance to abiotic stresses. Genome 2019; 62:689-703. [PMID: 31315001 DOI: 10.1139/gen-2019-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a plant with economic and ecological value. It is uniquely capable of growing well under salt and drought stress. WRKY transcription factors play important roles in the ability of plants to resist stress. In this study, 48 HrWRKY genes were identified based on RNA sequencing of H. rhamnoides. Evaluation of expression pattern of HrWRKY1, HrWRKY17, HrWRKY18, HrWRKY21, HrWRKY33-2, HrWRKY40-2, HrWRKY41, and HrWRKY71 suggested that they were involved in abiotic stress. Interestingly, HrWRKY21, one of eight HrWRKY genes, was a positive regulator of abiotic stress tolerance in H. rhamnoides. In addition, most morphological attributes of roots in transgenic Nicotiana tabacum lines (overexpressing HrWRKY21) were also markedly increased compared with the wild-type (WT), including total lengths, specific root lengths, and surface areas. Stress tolerance of transgenic lines was also correlated with higher antioxidant activity (SOD and POD), lower percentage of relative conductivity (REC), and lower activity of malondialdehyde (MDA) under stress conditions. These findings represent a foundation of knowledge about the molecular mechanisms driving resistance to adverse conditions in plants; they are a promising step towards development of tree cultivars with improved tolerance to abiotic stress.
Collapse
Affiliation(s)
- Zhaoyu Wang
- College of Life Science, Hebei University, Baoding, China
| | - Runxia Feng
- College of Life Science, Hebei University, Baoding, China
| | - Xue Zhang
- College of Life Science, Hebei University, Baoding, China
| | - Zhi Su
- Desert Forest Experimental Center, Chinese Academy of Forestry, Dengkou, China
| | - Jianrong Wei
- College of Life Science, Hebei University, Baoding, China
| | - Jianfeng Liu
- College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
31
|
Lv MJ, Wan W, Yu F, Meng LS. New Insights into the Molecular Mechanism Underlying Seed Size Control under Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9697-9704. [PMID: 31403787 DOI: 10.1021/acs.jafc.9b02497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In higher plants, seed size is an important parameter and agricultural trait in many aspects of evolutionary fitness. The loss of water-deficiency-induced crop yield is the largest among all natural hazards. Under water-deficient stress, the most prevalent response to terminal stress is to accelerate the early arrest of floral development and, thereby, to accelerate fruit/seed production, which consequently reduces seed size. This phenomenon is well-known, but its molecular mechanism is not well-reviewed and characterized. However, increasing evidence have indicated that water-deficient stress is always coordinated with three genetic signals (i.e., seed size regulators, initial seed size, and fruit number) that decide the final seed size. Here, our review presents new insights into the mechanism underlying cross-talk water-deficient stress signaling with three genetic signals controlling final seed size. These new insights may aid in preliminary screening, identifying novel genetic factors and future design strategies, or breeding to increase crop yield.
Collapse
Affiliation(s)
- Meng-Jiao Lv
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Wen Wan
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Fei Yu
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Lai-Sheng Meng
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| |
Collapse
|
32
|
Wang W, Chen Q, Botella JR, Guo S. Beyond Light: Insights Into the Role of Constitutively Photomorphogenic1 in Plant Hormonal Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:557. [PMID: 31156657 PMCID: PMC6532413 DOI: 10.3389/fpls.2019.00557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 05/20/2023]
Abstract
Light is an important environmental factor with profound effects in plant growth and development. Constitutively photomorphogenic1 (COP1) is a vital component of the light signaling pathway as a negative regulator of photomorphogenesis. Although the role of COP1 in light signaling has been firmly established for some time, recent studies have proven that COP1 is also a crucial part of multiple plant hormonal regulatory pathways. In this article, we review the available evidence involving COP1 in hormone signaling, its molecular mechanisms, and its contribution to the complicated regulatory network linking light and plant hormone signaling.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, China
| | - Qingbin Chen
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: José Ramón Botella,
| | - Siyi Guo
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- Siyi Guo,
| |
Collapse
|
33
|
Yang R, Hong Y, Ren Z, Tang K, Zhang H, Zhu JK, Zhao C. A Role for PICKLE in the Regulation of Cold and Salt Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:900. [PMID: 31354770 PMCID: PMC6633207 DOI: 10.3389/fpls.2019.00900] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/26/2019] [Indexed: 05/10/2023]
Abstract
Arabidopsis PICKLE (PKL) is a putative CHD3-type chromatin remodeling factor with important roles in regulating plant growth and development as well as RNA-directed DNA methylation (RdDM). The role of PKL protein in plant abiotic stress response is still poorly understood. Here, we report that PKL is important for cold stress response in Arabidopsis. Loss-of-function mutations in the PKL gene lead to a chlorotic phenotype in seedlings under cold stress, which is caused by the alterations in the transcript levels of some chlorophyll metabolism-related genes. The pkl mutant also exhibits increased electrolyte leakage after freezing treatment. These results suggest that PKL is required for proper chilling and freezing tolerance in plants. Gene expression analysis shows that CBF3, encoding a key transcription factor involved in the regulation of cold-responsive genes, exhibits an altered transcript level in the pkl mutant under cold stress. Transcriptome data also show that PKL regulates the expression of a number of cold-responsive genes, including RD29A, COR15A, and COR15B, possibly through its effect on the expression of CBF3 gene. Mutation in PKL gene also results in decreased cotyledon greening rate and reduced primary root elongation under high salinity. Together, our results suggest that PKL regulates plant responses to cold and salt stress.
Collapse
Affiliation(s)
- Rong Yang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Rong Yang,
| | - Yechun Hong
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Ren
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Tang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Heng Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Chunzhao Zhao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
- Chunzhao Zhao,
| |
Collapse
|
34
|
Vaishak KP, Yadukrishnan P, Bakshi S, Kushwaha AK, Ramachandran H, Job N, Babu D, Datta S. The B-box bridge between light and hormones in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:164-174. [PMID: 30640143 DOI: 10.1016/j.jphotobiol.2018.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
Abstract
Plant development is meticulously modulated by interactions between the surrounding environment and the endogenous phytohormones. Light, as an external signal coordinates with the extensive networks of hormones inside the plant to execute its effects on growth and development. Several proteins in plants have been identified for their crucial roles in mediating light regulated development. Among these are the B-box (BBX) family of transcription factors characterized by the presence of zinc-finger B-box domain in their N-terminal region. In Arabidopsis there are 32 BBX proteins that are divided into five structural groups on the basis of the domains present. Several BBX proteins play important roles in seedling photomorphogenesis, neighbourhood detection and photoperiodic regulation of flowering. There is increasing evidence that besides light signaling BBX proteins also play integral roles in several hormone signaling pathways in plants. Here we attempt to comprehensively integrate the roles of multiple BBX proteins in various light and hormone signaling pathways. We further discuss the role of the BBX proteins in mediating crosstalk between the two signaling pathways to harmonize plant growth and development. Finally, we try to analyse the conservation of BBX genes across species and discuss the role of BBX proteins in regulating economically important traits in crop plants.
Collapse
Affiliation(s)
- K P Vaishak
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India; School of Biological Sciences, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, India
| | - Premachandran Yadukrishnan
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Souvika Bakshi
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Kushwaha
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Harshil Ramachandran
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Nikhil Job
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Dion Babu
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Sourav Datta
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|