1
|
Yang J, Gao F, Pan H. Essential roles of nodule cysteine-rich peptides in maintaining the viability of terminally differentiated bacteroids in legume-rhizobia symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1077-1085. [PMID: 40105505 DOI: 10.1111/jipb.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Investigations into the nitrogen-fixing symbiosis between legumes and rhizobia can yield innovative strategies for sustainable agriculture. Legume species of the Inverted Repeat-Lacking Clade (IRLC) and the Dalbergioids, can utilize nodule cysteine-rich (NCR) peptides, a diverse family of peptides characterized by four or six highly conserved cysteine residues, to communicate with their microbial symbionts. These peptides, many of which exhibit antimicrobial properties, induce profound differentiation of bacteroids (semi-autonomous forms of bacteria) within nodule cells. This terminal differentiation endows the bacteroids with the ability to fix nitrogen, at the expense of their reproductive capacity. Notably, a significant number of NCR peptides is expressed in the nodule fixation zone, where the bacteroids have already reached terminal differentiation. Recent discoveries, through forward genetics approaches, have revealed that the functions of NCR peptides extend beyond antimicrobial effects and the promotion of differentiation. They also play a critical role in sustaining the viability of terminally differentiated bacteroids within nodule cells. These findings underscore the multifaceted functions of NCR peptides and highlight the importance of these peptides in mediating communications between host cells and the terminally differentiated bacteroids.
Collapse
Affiliation(s)
- Jian Yang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fengzhan Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Deak EA, Martin TN, Stecca JDL, Conceição GM, Ferreira MM, Rumpel VS, Grolli Carvalho AF, Baena FJL. Sulfur fertilization and inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. can improve grain yield and quality. Braz J Microbiol 2025; 56:573-588. [PMID: 39666164 PMCID: PMC11885774 DOI: 10.1007/s42770-024-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
The success of biological nitrogen fixation (BNF) in soybean depends on two crucial factors, viz., seed inoculation and soil nutritional balance. The macronutrient sulfur (S) is vital to the formation of ferredoxin, a common source of electrons that controls the proper functioning of the subunits of the enzyme nitrogenase, responsible for the conversion of atmospheric nitrogen (N2) to ammonia (NH3+). However, as the S dynamics is a complex process in soil, it may cause to the plants to be sulfur limited. This study aims at assessing the relationship between S fertilization through the use of elemental-S, and bacterial inoculation (Bradyrhizobium spp.) and co-inoculation (Bradyrhizobium spp. and Azospirillum brasilense) on nodulation, production and quality of soybean. The study was performed on the 2017/2018 and 2018/2019 crop seasons, involving four experiments where two were carried out in Santa Maria and two in Augusto Pestana, Rio Grande do Sul, Brazil. Adopting the randomized experimental block design, the treatments included a 3 × 4 factorial design, with three inoculations (Non-inoculated control, Inoculation and Co-inoculation) together with four doses of S (0, 20, 40 and 60 kg ha- 1). Evaluations were done of the plant nodulation, accumulation of shoot dry matter, yield constituents, and quality of the soybean grain. S fertilization and co-inoculation promote an increase in plant nodulation, proving to be an important strategy to support nitrogen supply to soybean crops. The application of elemental sulfur in doses between 20 and 40 kg ha- 1 promotes nodulation, the accumulation of dry mass of plants, the productivity and quality of soybeans, in addition to benefiting nodulation when combined with co-inoculation of Bradyrhizobium ssp. and Azospirillum brasilense.
Collapse
Affiliation(s)
- Evandro Ademir Deak
- Departamento de Fitotecnia, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thomas Newton Martin
- Departamento de Fitotecnia, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil.
| | | | | | - Matheus Martins Ferreira
- Departamento de Fitotecnia, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Vítor Sauzem Rumpel
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ, Ijuí, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
3
|
Ayala-García P, Herrero-Gómez I, Jiménez-Guerrero I, Otto V, Moreno-de Castro N, Müsken M, Jänsch L, van Ham M, Vinardell JM, López-Baena FJ, Ollero FJ, Pérez-Montaño F, Borrero-de Acuña JM. Extracellular Vesicle-Driven Crosstalk between Legume Plants and Rhizobia: The Peribacteroid Space of Symbiosomes as a Protein Trafficking Interface. J Proteome Res 2025; 24:94-110. [PMID: 39665174 PMCID: PMC11705226 DOI: 10.1021/acs.jproteome.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Prokaryotes and eukaryotes secrete extracellular vesicles (EVs) into the surrounding milieu to preserve and transport elevated concentrations of biomolecules across long distances. EVs encapsulate metabolites, DNA, RNA, and proteins, whose abundance and composition fluctuate depending on environmental cues. EVs are involved in eukaryote-to-prokaryote communication owing to their ability to navigate different ecological niches and exchange molecular cargo between the two domains. Among the different bacterium-host relationships, rhizobium-legume symbiosis is one of the closest known to nature. A crucial developmental stage of symbiosis is the formation of N2-fixing root nodules by the plant. These nodules contain endocytosed rhizobia─called bacteroids─confined by plant-derived peribacteroid membranes. The unrestricted interface between the bacterial external membrane and the peribacteroid membrane is the peribacteroid space. Many molecular aspects of symbiosis have been studied, but the interbacterial and interdomain molecule trafficking by EVs in the peribacteroid space has not been questioned yet. Here, we unveil intensive EV trafficking within the symbiosome interface of several rhizobium-legume dual systems by developing a robust EV isolation procedure. We analyze the EV-encased proteomes from the peribacteroid space of each bacterium-host partnership, uncovering both conserved and differential traits of every symbiotic system. This study opens the gates for designing EV-based biotechnological tools for sustainable agriculture.
Collapse
Affiliation(s)
- Paula Ayala-García
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Irene Herrero-Gómez
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Irene Jiménez-Guerrero
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Viktoria Otto
- Institute
of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Natalia Moreno-de Castro
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Mathias Müsken
- Central
Facility for Microscopy, Helmholtz Centre
for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Cellular
Proteome Research, Helmholtz Centre for
Infection Research, Inhoffenstraße
7, 38124 Braunschweig, Germany
| | - Marco van Ham
- Cellular
Proteome Research, Helmholtz Centre for
Infection Research, Inhoffenstraße
7, 38124 Braunschweig, Germany
| | - José-María Vinardell
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Javier López-Baena
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Javier Ollero
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Pérez-Montaño
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - José Manuel Borrero-de Acuña
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Coquerel R, Arkoun M, Trouverie J, Bernay B, Laîné P, Etienne P. Ionomic and proteomic changes highlight the effect of silicon supply on the nodules functioning of Trifolium incarnatum L. FRONTIERS IN PLANT SCIENCE 2024; 15:1462149. [PMID: 39568457 PMCID: PMC11576322 DOI: 10.3389/fpls.2024.1462149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Introduction Numerous studies have reported the beneficial effects of silicon (Si) in alleviating biotic or abiotic stresses in many plant species. However, the role of Si in Fabaceae facing environmental stress is poorly documented. The aim of this study is to investigate the effect of Si on physiological traits and nodulation efficiency in Trifolium incarnatum L. Methods Si was supplied (1.7 mM in the form of Na2SiO3) plants inoculated with Rhizobium leguminosarum bv trifolii and plant physiological traits and nodule ionomic and molecular traits were monitored over 25 days. Results Si supply promoted shoot biomass, the quantity of both Si and N in roots and shoots, and the number, biomass and density of nodules and their nitrogenase abundance which contribute to better dinitrogen (N2) fixation. Ionomic analysis of nodules revealed that Si supply increased the amount of several macroelements (potassium, phosphorus and sulfur) and microelements (copper, zinc and molybdenum) known to improve nodulation efficiency and N2 fixation. Finally, comparative proteomic analysis (+Si versus -Si) of nodules highlighted that Si modulated the proteome of both symbionts with 989 and 212 differentially accumulated proteins (DAPs) in the infected host root cells and their symbiont bacteria, respectively. Discussion Among the DAPs, the roles of those involved in nodulation and N2 fixation are discussed. For the first time, this study provides new insights into the effects of Si on both nodular partners and paves the way for a better understanding of the impact of Si on improving nodule function, and more specifically, on the nodules' N2-fixing capacity.
Collapse
Affiliation(s)
- Raphaël Coquerel
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial d'Innovation-Groupe Roullier, Saint-Malo, France
| | - Jacques Trouverie
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Benoit Bernay
- Université de Caen Normandie, Plateforme Proteogen, US EMerode 4206, Caen, France
| | - Philippe Laîné
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| | - Philippe Etienne
- UFR des Sciences, Université de Caen Normandie, INRAE, UMR 950 EVA, Caen, France
| |
Collapse
|
5
|
Guo P, Du H, Mao Q, Deng Y, Wang X, Li J, Xiong B, Fan X, Wang D, Agathokleous E, Ma M. The duality of sulfate-reducing bacteria: Reducing methylmercury production in rhizosphere but enhancing accumulation in rice plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135049. [PMID: 38970973 DOI: 10.1016/j.jhazmat.2024.135049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Sulfate-reducing bacteria (SRB) are known to alter methylmercury (MeHg) production in paddy soil, but the effect of SRB on MeHg dynamics in rhizosphere and rice plants remains to be fully elucidated. The present study investigated the impact of SRB on MeHg levels in unsterilized and γ-sterilized mercury-polluted paddy soils, with the aim to close this knowledge gap. Results showed that the presence of SRB reduced MeHg production by ∼22 % and ∼17 % in the two soils, but elevated MeHg contents by approximately 55 % and 99 % in rice grains, respectively. Similar trend at smaller scales were seen in roots and shoots. SRB inoculation exerted the most profound impact on amino acid metabolism in roots, with the relative response of L-arginine positively linking to MeHg concentrations in rhizosphere. The SRB-induced enrichment of MeHg in rice plants may be interpreted by the stronger presence of endophytic nitrogen-related microbes (e.g. Methylocaldum, Hyphomicrobium and Methylocystis) and TGA transcription factors interacting with glutathione metabolism and calmodulin. Our study provides valuable insights into the complex effects of SRB inoculation on MeHg dynamics in rice ecosystems, and may help to develop strategies to effectively control MeHg accumulation in rice grains.
Collapse
Affiliation(s)
- Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Hongxia Du
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Qiaozhi Mao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yuhan Deng
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, PR China
| | - Xun Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Li
- School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, PR China
| | - Bingcai Xiong
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xu Fan
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, PR China
| | - Evgenios Agathokleous
- Department of Ecology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Siegl A, Afjehi-Sadat L, Wienkoop S. Systemic long-distance sulfur transport and its role in symbiotic root nodule protein turnover. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154260. [PMID: 38701679 DOI: 10.1016/j.jplph.2024.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.
Collapse
Affiliation(s)
- Alina Siegl
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Gupta VVSR, Tiedje JM. Ranking environmental and edaphic attributes driving soil microbial community structure and activity with special attention to spatial and temporal scales. MLIFE 2024; 3:21-41. [PMID: 38827504 PMCID: PMC11139212 DOI: 10.1002/mlf2.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 06/04/2024]
Abstract
The incredibly complex soil microbial communities at small scales make their analysis and identification of reasons for the observed structures challenging. Microbial community structure is mainly a result of the inoculum (dispersal), the selective advantages of those organisms under the habitat-based environmental attributes, and the ability of those colonizers to sustain themselves over time. Since soil is protective, and its microbial inhabitants have long adapted to varied soil conditions, significant portions of the soil microbial community structure are likely stable. Hence, a substantial portion of the community will not correlate to often measured soil attributes. We suggest that the drivers be ranked on the basis of their importance to the fundamental needs of the microbes: (i) those that supply energy, i.e., organic carbon and electron acceptors; (ii) environmental effectors or stressors, i.e., pH, salt, drought, and toxic chemicals; (iii) macro-organism associations, i.e., plants and their seasonality, animals and their fecal matter, and soil fauna; and (iv) nutrients, in order, N, P, and probably of lesser importance, other micronutrients, and metals. The relevance of drivers also varies with spatial and time scales, for example, aggregate to field to regional, and persistent to dynamic populations to transcripts, and with the extent of phylogenetic difference, hence phenotypic differences in organismal groups. We present a summary matrix to provide guidance on which drivers are important for particular studies, with special emphasis on a wide range of spatial and temporal scales, and illustrate this with genomic and population (rRNA gene) data from selected studies.
Collapse
Affiliation(s)
| | - James M. Tiedje
- Centre for Microbial EcologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
8
|
Fukudome M, Uchiumi T. Regulation of nitric oxide by phytoglobins in Lotus japonicus is involved in mycorrhizal symbiosis with Rhizophagus irregularis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111984. [PMID: 38220094 DOI: 10.1016/j.plantsci.2024.111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Various reactive molecular species are generated in plant-microbe interactions, and these species participate in defense and symbiotic responses. Leguminous plants successfully establish symbiosis by maintaining an appropriate level of nitric oxide (NO), which is generated in the roots and nodules during root nodule symbiosis. Phytoglobin (plant hemoglobin) controls NO levels in plants. In this study, we investigated mycorrhizal symbiosis, which occurs in more than 80% of land plants, between Rhizophagus irregularis and Lotus japonicus to clarify the involvement of phytoglobin-mediated NO regulation. The mycorrhizae of L. japonicus exhibited higher NO levels in the presence of R. irregularis than in its absence, especially at the infection site. LjGlb1-1, a phytoglobin that regulates NO level in L. japonicus, was upregulated during symbiosis with R. irregularis. In transformed hairy roots carrying the ProLjGlb1-1:GUS construct, LjGlb1-1 expression was observed at the R. irregularis infection site. We further examined the symbiotic phenotypes of L. japonicus lines with high and low LjGlb1-1 expression with R. irregularis. During mycorrhizal symbiosis, the high LjGlb1-1 expression line exhibited better growth than the wild-type, whereas the low expression line exhibited poor growth. In addition, the expression of LjPT4, a phosphate transporter specific to mycorrhizal symbiosis, was higher in the high LjGlb1-1 expression line, whereas that of the tubulin gene of R. irregularis was lower in the low LjGlb1-1 expression line than in the wild-type. These results confirm that NO regulation by LjGlb1-1 is involved in mycorrhizal symbiosis in L. japonicus, as it is reportedly in nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
9
|
de Jager N, Shukla V, Koprivova A, Lyčka M, Bilalli L, You Y, Zeier J, Kopriva S, Ristova D. Traits linked to natural variation of sulfur content in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1036-1050. [PMID: 37831920 PMCID: PMC10837017 DOI: 10.1093/jxb/erad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.
Collapse
Affiliation(s)
- Nicholas de Jager
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Varsa Shukla
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lorina Bilalli
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Yanrong You
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
10
|
Ayala-García P, Jiménez-Guerrero I, Müsken M, Ollero FJ, Borrero-De Acuña JM, Pérez-Montaño F. Isolation of Rhizobial Extracellular Membrane Vesicles from Bacteroids. Methods Mol Biol 2024; 2751:229-236. [PMID: 38265720 DOI: 10.1007/978-1-0716-3617-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Extracellular-membrane vesicles (EMVs) are spherical buds of the extracellular membrane, commonly produced by Gram-negative bacteria, known to mediate intricate inter-kingdom communication. In this context, comprehensive research dissecting the role of EMVs in one of the most complex nature-occurring molecular dialogues, rhizobium-legume symbiosis, has been so far neglected. During the different stages of the symbiotic process, rhizobia and their host plants establish a very specific and controlled intercellular trafficking of signal molecules. Thus, as conveyors of a broad range of molecules into the target cell, EMVs are gaining weight in the field. Here, we describe a detailed protocol to isolate EMVs from bacteroids of legume nodules, opening a new door for discovering new authors of the symbiotic process.
Collapse
Affiliation(s)
| | | | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | |
Collapse
|
11
|
Ma Y, Zhu W, Zhao W, Zhang B, He J, Zhang C, Li P, Hu Y, Zhou Z, Yan Z, Li J, Cai W, Ren G, Chen R. MtESN2 is a subgroup II sulphate transporter required for symbiotic nitrogen fixation and prevention of nodule early senescence in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2023; 46:3558-3574. [PMID: 37545348 DOI: 10.1111/pce.14678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.
Collapse
Affiliation(s)
- Yanlin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Weike Zhu
- College of Cuiying Honors, Lanzhou University, Lanzhou, China
| | - Weichen Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Beihong Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chenyan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Peng Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yibo Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zaicai Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zezhang Yan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanjuan Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenkai Cai
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Magnucka EG, Kulczycki G, Oksińska MP, Kucińska J, Pawęska K, Milo Ł, Pietr SJ. The Effect of Various Forms of Sulfur on Soil Organic Matter Fractions and Microorganisms in a Pot Experiment with Perennial Ryegrass ( Lolium perenne L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2649. [PMID: 37514266 PMCID: PMC10384080 DOI: 10.3390/plants12142649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
This article focuses on the agronomic evaluation of the supplementation of mineral NPKMg fertilizers with elemental sulfur, magnesium, potassium, or ammonium sulfates in pot experiments with ryegrass growing in a sandy Arenosol with very low sulfur content. A benefit evaluation was carried out on the basis of biomass production, crop nutritional status, and changes in the content of soil organic matter fractions. Furthermore, the total number of bacteria, nitrogen-fixing bacteria, and fungi was estimated using the qPCR technique in soil samples after 60 days of ryegrass growth. The combined application of NPKMg and sulfur or sulfate fertilizers significantly increased the summary yield of three cuttings of fresh ryegrass biomass in the range of 32.3% to 82.7%. The application, especially in the form of sulfates, significantly decreased the content of free phenolic acids. Furthermore, compared to the control, i.e., soil with NPKMg applied alone, an increase in the content of glomalin-related proteins and a decrease in the amount of water-soluble organic carbon compounds were observed. Neither the number of DNA marker copy numbers of the total bacterial community nor the nitrogen-fixing bacteria were noticeably different. In turn, the total number of genetic markers for fungi was significantly higher in soils with potassium or ammonium sulfates compared to the control soil. The general results suggest that the application of sulfur fertilizers with NPKMg mineral fertilizer can benefit crops and support soil fertility due to the stabilization of aggregates and the decrease in water-soluble organic compounds.
Collapse
Affiliation(s)
- Elżbieta G Magnucka
- Laboratory of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| | - Grzegorz Kulczycki
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| | - Małgorzata P Oksińska
- Laboratory of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| | - Jolanta Kucińska
- Laboratory of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| | - Katarzyna Pawęska
- Institute of Environmental Engineering, Wrocław University of Environmental & Life Sciences, Grunwaldzki Sq. 24, 50-363 Wrocław, Poland
| | - Łukasz Milo
- Chemical Plants "Siarkopol" Tarnobrzeg Ltd., Chemiczna St. 3, 39-400 Tarnobrzeg, Poland
| | - Stanisław J Pietr
- Laboratory of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental & Life Sciences, Grunwaldzka St. 53, 50-357 Wrocław, Poland
| |
Collapse
|
13
|
Lu W, Zheng Z, Kang Q, Liu H, Jia H, Yu F, Zhang Y, Han D, Zhang X, Yan X, Huo M, Wang J, Chen Q, Zhao Y, Xin D. Detection of type III effector-induced transcription factors that regulate phytohormone content during symbiosis establishment in soybean. PHYSIOLOGIA PLANTARUM 2023; 175:e13872. [PMID: 36764699 DOI: 10.1111/ppl.13872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Soybean is a pivotal protein and oil crop that utilizes atmospheric nitrogen via symbiosis with rhizobium soil bacteria. Rhizobial type III effectors (T3Es) are essential regulators during symbiosis establishment. However, how the transcription factors involved in the interaction between phytohormone synthesis and type III effectors are connected is unclear. To detect the responses of phytohormone and transcription factor genes to rhizobial type III effector NopAA and type III secretion system, the candidate genes underlying soybean symbiosis were identified using RNA sequencing (RNA-seq) and phytohormone content analysis of soybean roots infected with wild-type Rhizobium and its derived T3E mutant. Via RNA-seq analysis the WRKY and ERF transcription factor families were identified as the most differentially expressed factors in the T3E mutant compared with the wild-type. Next, qRT-PCR was used to confirm the candidate genes Glyma.09g282900, Glyma.08g018300, Glyma.18g238200, Glyma.03g116300, Glyma.07g246600, Glyma.16g172400 induced by S. fredii HH103, S. fredii HH103ΩNopAA, and S. fredii HH103ΩRhcN. Since the WRKY and ERF families may regulate abscisic acid (ABA) content and underlying nodule formation, we performed phytohormone content analysis at 0.5 and 24 h post-inoculation (hpi). A significant change in ABA content was found between wild Rhizobium and type III effector mutant. Our results support that NopAA can promote the establishment of symbiosis by affecting the ABA signaling pathways by regulating WRKY and ERF which regulate the phytohormone signaling pathway. Specifically, our work provides insights into a signaling interaction of prokaryotic effector-induced phytohormone response involved in host signaling that regulates the establishment of symbiosis and increases nitrogen utilization efficiency in soybean plants.
Collapse
Affiliation(s)
- Wencheng Lu
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Zefeng Zheng
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qinglin Kang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongji Liu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongchang Jia
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Fenghao Yu
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuxin Zhang
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Dezhi Han
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Xiaoyuan Zhang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Yan
- Soybean Research Institute, Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Mingqi Huo
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jinhui Wang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Ying Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- Key Laboratory of Soybean Biology in Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Rapid Changes to Endomembrane System of Infected Root Nodule Cells to Adapt to Unusual Lifestyle. Int J Mol Sci 2023; 24:ijms24054647. [PMID: 36902077 PMCID: PMC10002930 DOI: 10.3390/ijms24054647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Symbiosis between leguminous plants and soil bacteria rhizobia is a refined type of plant-microbial interaction that has a great importance to the global balance of nitrogen. The reduction of atmospheric nitrogen takes place in infected cells of a root nodule that serves as a temporary shelter for thousands of living bacteria, which, per se, is an unusual state of a eukaryotic cell. One of the most striking features of an infected cell is the drastic changes in the endomembrane system that occur after the entrance of bacteria to the host cell symplast. Mechanisms for maintaining intracellular bacterial colony represent an important part of symbiosis that have still not been sufficiently clarified. This review focuses on the changes that occur in an endomembrane system of infected cells and on the putative mechanisms of infected cell adaptation to its unusual lifestyle.
Collapse
|
15
|
Wang W, Liu J, Mishra B, Mukhtar MS, McDowell JM. Sparking a sulfur war between plants and pathogens. TRENDS IN PLANT SCIENCE 2022; 27:1253-1265. [PMID: 36028431 DOI: 10.1016/j.tplants.2022.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The biochemical versatility of sulfur (S) lends itself to myriad roles in plant-pathogen interactions. This review evaluates the current understanding of mechanisms by which pathogens acquire S from their plant hosts and highlights new evidence that plants can limit S availability during the immune responses. We discuss the discovery of host disease-susceptibility genes related to S that can be genetically manipulated to create new crop resistance. Finally, we summarize future research challenges and propose a research agenda that leverages systems biology approaches for a holistic understanding of this important element's diverse roles in plant disease resistance and susceptibility.
Collapse
Affiliation(s)
- Wei Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
16
|
Mondal S, Pramanik K, Panda D, Dutta D, Karmakar S, Bose B. Sulfur in Seeds: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030450. [PMID: 35161431 PMCID: PMC8838887 DOI: 10.3390/plants11030450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/30/2023]
Abstract
Sulfur is a growth-limiting and secondary macronutrient as well as an indispensable component for several cellular components of crop plants. Over the years various scientists have conducted several experiments on sulfur metabolism based on different aspects of plants. Sulfur metabolism in seeds has immense importance in terms of the different sulfur-containing seed storage proteins, the significance of transporters in seeds, the role of sulfur during the time of seed germination, etc. The present review article is based on an overview of sulfur metabolism in seeds, in respect to source to sink relationships, S transporters present in the seeds, S-regulated seed storage proteins and the importance of sulfur at the time of seed germination. Sulfur is an essential component and a decidable factor for seed yield and the quality of seeds in terms of oil content in oilseeds, storage of qualitative proteins in legumes and has a significant role in carbohydrate metabolism in cereals. In conclusion, a few future perspectives towards a more comprehensive knowledge on S metabolism/mechanism during seed development, storage and germination have also been stated.
Collapse
Affiliation(s)
- Sananda Mondal
- Department of Crop Physiology, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Kalipada Pramanik
- Department of Agronomy, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Debasish Panda
- Department of Crop Physiology, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Debjani Dutta
- Department of Plant Physiology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (D.D.); (S.K.)
| | - Snehashis Karmakar
- Department of Plant Physiology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (D.D.); (S.K.)
| | - Bandana Bose
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
17
|
Paredes GF, Viehboeck T, Lee R, Palatinszky M, Mausz MA, Reipert S, Schintlmeister A, Maier A, Volland JM, Hirschfeld C, Wagner M, Berry D, Markert S, Bulgheresi S, König L. Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. mSystems 2021; 6:e0118620. [PMID: 34058098 PMCID: PMC8269255 DOI: 10.1128/msystems.01186-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on "Candidatus Thiosymbion oneisti." Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that "Ca. T. oneisti" may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of "Candidatus Thiosymbion oneisti," a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.
Collapse
Affiliation(s)
- Gabriela F. Paredes
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Tobias Viehboeck
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Raymond Lee
- Washington State University, School of Biological Sciences, Pullman, Washington, USA
| | - Marton Palatinszky
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela A. Mausz
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Siegfried Reipert
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Vienna, Austria
| | - Arno Schintlmeister
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Vienna, Austria
| | - Andreas Maier
- University of Vienna, Faculty of Geosciences, Geography, and Astronomy, Department of Geography and Regional Research, Geoecology, Vienna, Austria
| | - Jean-Marie Volland
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Claudia Hirschfeld
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Michael Wagner
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark
| | - David Berry
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Stephanie Markert
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Silvia Bulgheresi
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Lena König
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| |
Collapse
|
18
|
Gavrin A, Loughlin PC, Brear E, Griffith OW, Bedon F, Suter Grotemeyer M, Escudero V, Reguera M, Qu Y, Mohd-Noor SN, Chen C, Osorio MB, Rentsch D, González-Guerrero M, Day DA, Smith PMC. Soybean Yellow Stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation. PLANT PHYSIOLOGY 2021; 186:581-598. [PMID: 33619553 PMCID: PMC8154080 DOI: 10.1093/plphys/kiab044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM. Here we characterize Yellow Stripe-like 7 (GmYSL7), a Yellow stripe-like family member localized on the SM in soybean (Glycine max) nodules. It is expressed specifically in infected cells with expression peaking soon after nitrogenase becomes active. Unlike most YSL family members, GmYSL7 does not transport metals complexed with phytosiderophores. Rather, it transports oligopeptides of between four and 12 amino acids. Silencing GmYSL7 reduces nitrogenase activity and blocks infected cell development so that symbiosomes contain only a single bacteroid. This indicates the substrate of YSL7 is required for proper nodule development, either by promoting symbiosome development directly or by preventing inhibition of development by the plant. RNAseq of nodules where GmYSL7 was silenced suggests that the plant initiates a defense response against rhizobia with genes encoding proteins involved in amino acid export downregulated and some transcripts associated with metal homeostasis altered. These changes may result from the decrease in nitrogen fixation upon GmYSL7 silencing and suggest that the peptide(s) transported by GmYSL7 monitor the functional state of the bacteroids and regulate nodule metabolism and transport processes accordingly. Further work to identify the physiological substrate for GmYSL7 will allow clarification of this role.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Patrick C Loughlin
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ella Brear
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Frank Bedon
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3083, Australia
| | | | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Maria Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Yihan Qu
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Siti N Mohd-Noor
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Chen
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marina Borges Osorio
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Doris Rentsch
- IPS, Molecular Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - David A Day
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, Australia
| | | |
Collapse
|
19
|
Li Q, Gao Y, Yang A. Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E8926. [PMID: 33255536 PMCID: PMC7727837 DOI: 10.3390/ijms21238926] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sulfur (S) is an essential macronutrient for plant growth and development. S is majorly absorbed as sulfate from soil, and is then translocated to plastids in leaves, where it is assimilated into organic products. Cysteine (Cys) is the first organic product generated from S, and it is used as a precursor to synthesize many S-containing metabolites with important biological functions, such as glutathione (GSH) and methionine (Met). The reduction of sulfate takes place in a two-step reaction involving a variety of enzymes. Sulfate transporters (SULTRs) are responsible for the absorption of SO42- from the soil and the transport of SO42- in plants. There are 12-16 members in the S transporter family, which is divided into five categories based on coding sequence homology and biochemical functions. When exposed to S deficiency, plants will alter a series of morphological and physiological processes. Adaptive strategies, including cis-acting elements, transcription factors, non-coding microRNAs, and phytohormones, have evolved in plants to respond to S deficiency. In addition, there is crosstalk between S and other nutrients in plants. In this review, we summarize the recent progress in understanding the mechanisms underlying S homeostasis in plants.
Collapse
Affiliation(s)
| | | | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; (Q.L.); (Y.G.)
| |
Collapse
|
20
|
Roy R, Reinders A, Ward JM, McDonald TR. Understanding transport processes in lichen, Azolla-cyanobacteria, ectomycorrhiza, endomycorrhiza, and rhizobia-legume symbiotic interactions. F1000Res 2020; 9. [PMID: 32047609 PMCID: PMC6979478 DOI: 10.12688/f1000research.19740.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Intimate interactions between photosynthetic and non-photosynthetic organisms require the orchestrated transfer of ions and metabolites between species. We review recent progress in identifying and characterizing the transport proteins involved in five mutualistic symbiotic interactions: lichens,
Azolla–cyanobacteria, ectomycorrhiza, endomycorrhiza, and rhizobia–legumes. This review focuses on transporters for nitrogen and carbon and other solutes exchanged in the interactions. Their predicted functions are evaluated on the basis of their transport mechanism and prevailing transmembrane gradients of H
+ and transported substrates. The symbiotic interactions are presented in the assumed order from oldest to most recently evolved.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, Minnesota, USA
| | - Anke Reinders
- College of Continuing and Professional Studies, University of Minnesota, Minnesota, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, Minnesota, USA
| | - Tami R McDonald
- Biology Department, St. Catherine University, Minnesota, USA
| |
Collapse
|
21
|
Escudero V, Abreu I, del Sastre E, Tejada-Jiménez M, Larue C, Novoa-Aponte L, Castillo-González J, Wen J, Mysore KS, Abadía J, Argüello JM, Castillo-Michel H, Álvarez-Fernández A, Imperial J, González-Guerrero M. Nicotianamine Synthase 2 Is Required for Symbiotic Nitrogen Fixation in Medicago truncatula Nodules. FRONTIERS IN PLANT SCIENCE 2020; 10:1780. [PMID: 32082345 PMCID: PMC7003136 DOI: 10.3389/fpls.2019.01780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/20/2019] [Indexed: 05/07/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires relatively large levels of transition metals. These elements are cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process mediated by a number of metal transporters and small organic molecules that facilitate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this molecule forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would result from the altered iron distribution in nas2-1 nodules shown with X-ray fluorescence. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Eric del Sastre
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Camille Larue
- EcoLab, Université de Toulouse, CNRS, Toulouse, France
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Jorge Castillo-González
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, United States
| | | | - Javier Abadía
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - José M. Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | | | - Ana Álvarez-Fernández
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Takahashi H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4075-4087. [PMID: 30907420 DOI: 10.1093/jxb/erz132] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Sulfate transporters are integral membrane proteins controlling the flux of sulfate (SO42-) entering the cells and subcellular compartments across the membrane lipid bilayers. Sulfate uptake is a dynamic biological process that occurs in multiple cell layers and organs in plants. In vascular plants, sulfate ions are taken up from the soil environment to the outermost cell layers of roots and horizontally transferred to the vascular tissues for further distribution to distant organs. The amount of sulfate ions being metabolized in the cytosol and chloroplast/plastid or temporarily stored in the vacuole depends on expression levels and functionalities of sulfate transporters bound specifically to the plasma membrane, chloroplast/plastid envelopes, and tonoplast membrane. The entire system for sulfate homeostasis, therefore, requires different types of sulfate transporters to be expressed and coordinately regulated in specific organs, cell types, and subcellular compartments. Transcriptional and post-transcriptional regulatory mechanisms control the expression levels and functions of sulfate transporters to optimize sulfate uptake and internal distribution in response to sulfate availability and demands for synthesis of organic sulfur metabolites. This review article provides an overview of sulfate transport systems and discusses their regulatory aspects investigated in the model plant species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Microbial associations enabling nitrogen acquisition in plants. Curr Opin Microbiol 2019; 49:83-89. [DOI: 10.1016/j.mib.2019.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
|