1
|
Marian M, Antonielli L, Pertot I, Perazzolli M. Amplicon sequencing and culture-dependent approaches reveal core bacterial endophytes aiding freezing stress tolerance in alpine Rosaceae plants. mBio 2025; 16:e0141824. [PMID: 39998219 PMCID: PMC11980557 DOI: 10.1128/mbio.01418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Wild plants growing in alpine regions are associated with endophytic microbial communities that may support plant growth and survival under cold conditions. The structure and function of endophytic bacterial communities were characterized in flowers, leaves, and roots of three alpine Rosaceae plants in Alpine areas using a combined amplicon sequencing and culture-dependent approaches to determine the role of core taxa on plant freezing stress tolerance. Amplicon sequencing analysis revealed that plant tissue, collection site, and host plant are the main factors affecting the richness, diversity, and taxonomic structure of endophytic bacterial communities in alpine Rosaceae plants. Core endophytic bacterial taxa were identified as 31 amplicon sequence variants highly prevalent across all plant tissues. Psychrotolerant bacterial endophytes belonging to the core taxa of Duganella, Erwinia, Pseudomonas, and Rhizobium genera mitigated freezing stress in strawberry plants, demonstrating the beneficial role of endophytic bacterial communities and their potential use for cold stress mitigation in agriculture.IMPORTANCEFreezing stress is one of the major abiotic stresses affecting fruit production in Rosaceae crops. Current strategies to reduce freezing damage include physical and chemical methods, which have several limitations in terms of costs, efficacy, feasibility, and environmental impacts. The use or manipulation of plant-associated microbial communities was proposed as a promising sustainable approach to alleviate cold stress in crops, but no information is available on the possible mitigation of freezing stress in Rosaceae plants. A combination of amplicon sequencing, culture-dependent, and plant bioassay approaches revealed the beneficial role of the endophytic bacterial communities in alpine Rosaceae plants. In particular, we showed that culturable psychrotolerant bacterial endophytes belonging to the core taxa of Duganella, Erwinia, Pseudomonas, and Rhizobium genera can mitigate freezing stress on strawberry seedlings. Overall, this study demonstrates the potential use of psychrotolerant bacterial endophytes for the development of biostimulants for cold stress mitigation in agriculture.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
2
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
3
|
Berg G, Dorador C, Egamberdieva D, Kostka JE, Ryu CM, Wassermann B. Shared governance in the plant holobiont and implications for one health. FEMS Microbiol Ecol 2024; 100:fiae004. [PMID: 38364305 PMCID: PMC10876113 DOI: 10.1093/femsec/fiae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
The holobiont Holobiont theory is more than 80 years old, while the importance of microbial communities for plant holobionts was already identified by Lorenz Hiltner more than a century ago. Both concepts are strongly supported by results from the new field of microbiome research. Here, we present ecological and genetic features of the plant holobiont that underpin principles of a shared governance between hosts and microbes and summarize the relevance of plant holobionts in the context of global change. Moreover, we uncover knowledge gaps that arise when integrating plant holobionts in the broader perspective of the holobiome as well as one and planetary health concepts. Action is needed to consider interacting holobionts at the holobiome scale, for prediction and control of microbiome function to improve human and environmental health outcomes.
Collapse
Affiliation(s)
- Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Cristina Dorador
- Department of Biotechnology, Universidad de Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB), Angamos 601, Antofagasta, Chile
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University, TIIAME, Kari Niyazi street 39, Tashkent 100000, Uzbekistan
- Medical School, Central Asian University, Milliy bog street 264, Tashkent 111221, Uzbekistan
| | - Joel E Kostka
- Schools of Biological Sciences and Earth & Atmospheric Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, United States
| | - Choong-Min Ryu
- Biosystems and Bioengineering, University of Science and Technology KRIBB School, 125 Gwahangro, Yuseong, Daejeon 34141, South Korea
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, 125 Gwahangro, Yuseong, Daejeon 34141, South Korea
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| |
Collapse
|
4
|
Totsline N, Kniel KE, Sabagyanam C, Bais HP. Simulated microgravity facilitates stomatal ingression by Salmonella in lettuce and suppresses a biocontrol agent. Sci Rep 2024; 14:898. [PMID: 38195662 PMCID: PMC10776768 DOI: 10.1038/s41598-024-51573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/07/2024] [Indexed: 01/11/2024] Open
Abstract
As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19713, USA.
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19713, USA
| | - Chandran Sabagyanam
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19713, USA.
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
5
|
Totsline N, Kniel KE, Bais HP. Microgravity and evasion of plant innate immunity by human bacterial pathogens. NPJ Microgravity 2023; 9:71. [PMID: 37679341 PMCID: PMC10485020 DOI: 10.1038/s41526-023-00323-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Spaceflight microgravity and modeled-microgravity analogs (MMA) broadly alter gene expression and physiology in both pathogens and plants. Research elucidating plant and bacterial responses to normal gravity or microgravity has shown the involvement of both physiological and molecular mechanisms. Under true and simulated microgravity, plants display differential expression of pathogen-defense genes while human bacterial pathogens exhibit increased virulence, antibiotic resistance, stress tolerance, and reduced LD50 in animal hosts. Human bacterial pathogens including Salmonella enterica and E. coli act as cross-kingdom foodborne pathogens by evading and suppressing the innate immunity of plants for colonization of intracellular spaces. It is unknown if evasion and colonization of plants by human pathogens occurs under microgravity and if there is increased infection capability as demonstrated using animal hosts. Understanding the relationship between microgravity, plant immunity, and human pathogens could prevent potentially deadly outbreaks of foodborne disease during spaceflight. This review will summarize (1) alterations to the virulency of human pathogens under microgravity and MMA, (2) alterations to plant physiology and gene expression under microgravity and MMA, (3) suppression and evasion of plant immunity by human pathogens under normal gravity, (4) studies of plant-microbe interactions under microgravity and MMA. A conclusion suggests future study of interactions between plants and human pathogens under microgravity is beneficial to human safety, and an investment in humanity's long and short-term space travel goals.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Kizheva Y, Georgiev G, Donchev D, Dimitrova M, Pandova M, Rasheva I, Hristova P. Cross-Over Pathogenic Bacteria Detected in Infected Tomatoes ( Solanum lycopersicum L.) and Peppers ( Capsicum annuum L.) in Bulgaria. Pathogens 2022; 11:1507. [PMID: 36558841 PMCID: PMC9783152 DOI: 10.3390/pathogens11121507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The ability of certain human pathogens to adapt to plants without losing their virulence toward people is a major concern today. Thus, the aim of the present work was the investigation of the presence of cross-over pathogenic bacteria in infected tomato and pepper plants. The objects of the study were 21 samples from seven different parts of the plants and three from tomato rhizosphere. In total, 26 strains were isolated, identified by MALDI-TOF, and phenotypically characterized. The PCR amplification of the rpoB gene was applied as an approach for the rapid detection of cross-over pathogens in plant samples. A great bacterial diversity was revealed from tomato samples as nine species were identified (Leclercia adecarboxylata, Pseudesherichia vulneris, Enterobacter cancerogenus, Enterobacter cloacae, Enterobacter bugandensis, Acinetobacter calcoaceticus, Pantoea agglomerans, Pantoea ananatis, and Pectobacterium carotovorum). Polymicrobial contaminations were observed in samples T2 (tomato flower) and T10 (tomato fruit). Five species were identified from pepper samples (P. agglomerans, L. adecarboxylata, Pseudomonas sp., Pseudomonas putida, and Enterococcus sp.). Antibiotic resistance patterns were assigned in accordance with EFSA recommendations. All isolates showed varying resistance to the tested antibiotics. The genetic basis for the phenotypic antibiotic resistance was not revealed. No genes for the virulence factors were found among the population. To our knowledge, this is the first overall investigation of tomato and pepper cross-over pathogenic bacterial populations in Bulgaria.
Collapse
Affiliation(s)
- Yoana Kizheva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University, 1504 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
7
|
Olawole OI, Gleason ML, Beattie GA. Expression and Functional Analysis of the Type III Secretion System Effector Repertoire of the Xylem Pathogen Erwinia tracheiphila on Cucurbits. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:768-778. [PMID: 35471035 DOI: 10.1094/mpmi-01-22-0002-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The predicted repertoire of type III secretion system effectors (T3SEs) in Erwinia tracheiphila, causal agent of cucurbit bacterial wilt, is much larger than in xylem pathogens in the closely related genera Erwinia and Pantoea. The genomes of strains BHKY and SCR3, which represent distinct E. tracheiphila clades, encode at least 6 clade-specific and 12 shared T3SEs. The strains expressed the majority of the T3SE genes examined in planta. Among the shared T3SE genes, eop1 was expressed most highly in both strains in squash (Cucurbita pepo) and muskmelon (Cucumis melo) but the clade-specific gene avrRpm2 was expressed 40- to 900-fold more than eop1 in BHKY. The T3SEs AvrRpm2, Eop1, SrfC, and DspE contributed to BHKY virulence on squash and muskmelon, as shown using combinatorial mutants involving six T3SEs, whereas OspG and AvrB4 contributed to BHKY virulence only on muskmelon, demonstrating host-specific virulence functions. Moreover, Eop1 was functionally redundant with AvrRpm2, SrfC, OspG, and AvrB4 in BHKY, and BHKY mutants lacking up to five effector genes showed similar virulence to mutants lacking only two genes. The T3SEs OspG, AvrB4, and DspE contributed additively to SCR3 virulence on muskmelon and were not functionally redundant with Eop1. Rather, loss of eop1 and avrB4 restored wild-type virulence to the avrB4 mutant, suggesting that Eop1 suppresses a functionally redundant effector in SCR3. These results highlight functional differences in effector inventories between two E. tracheiphila clades, provide the first evidence of OspG as a phytopathogen effector, and suggest that Eop1 may be a metaeffector influencing virulence. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Olakunle I Olawole
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011-1101, U.S.A
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011-1101, U.S.A
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011-1101, U.S.A
| |
Collapse
|
8
|
Michalopoulou VA, Mermigka G, Kotsaridis K, Mentzelopoulou A, Celie PHN, Moschou PN, Jones JDG, Sarris PF. The host exocyst complex is targeted by a conserved bacterial type-III effector that promotes virulence. THE PLANT CELL 2022; 34:3400-3424. [PMID: 35640532 PMCID: PMC9421483 DOI: 10.1093/plcell/koac162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/23/2022] [Indexed: 05/30/2023]
Abstract
For most Gram-negative bacteria, pathogenicity largely depends on the type-III secretion system that delivers virulence effectors into eukaryotic host cells. The subcellular targets for the majority of these effectors remain unknown. Xanthomonas campestris, the causal agent of black rot disease of crucifers such as Brassica spp., radish, and turnip, delivers XopP, a highly conserved core-effector protein produced by X. campestris, which is essential for virulence. Here, we show that XopP inhibits the function of the host-plant exocyst complex by direct targeting of Exo70B, a subunit of the exocyst complex, which plays a significant role in plant immunity. XopP interferes with exocyst-dependent exocytosis and can do this without activating a plant NOD-like receptor that guards Exo70B in Arabidopsis. In this way, Xanthomonas efficiently inhibits the host's pathogen-associated molecular pattern (PAMP)-triggered immunity by blocking exocytosis of pathogenesis-related protein-1A, callose deposition, and localization of the FLAGELLIN SENSITIVE2 (FLS2) immune receptor to the plasma membrane, thus promoting successful infection. Inhibition of exocyst function without activating the related defenses represents an effective virulence strategy, indicating the ability of pathogens to adapt to host defenses by avoiding host immunity responses.
Collapse
Affiliation(s)
- Vassiliki A Michalopoulou
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Glykeria Mermigka
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Konstantinos Kotsaridis
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | | | - Patrick H N Celie
- Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala S-75007, Sweden
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
10
|
Liang D, Guo J, Hou F, Bowatte S. High level of conservation and diversity among the endophytic seed bacteriome in eight alpine grassland species growing at the Qinghai Tibetan Plateau. FEMS Microbiol Ecol 2021; 97:6246421. [PMID: 33885767 DOI: 10.1093/femsec/fiab060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Seed borne microorganisms play an important role in plant biology. Concerns have recently been raised about loss of seed microbial diversity by seed treatments, crop domestication and plant breeding. Information on the seed microbiomes of native plants growing in natural ecosystems is beneficial as they provide the best settings to detect indigenous plant microbe interactions. Here, we characterized the seed bacterial community of 8 native alpine grassland plants. First, seed bacterial diversity was examined using Illumina DNA sequencing, then 28 cultivable bacteria were isolated and potential functions were explored. Across 8 plant species, 343 different bacterial genera were identified as seed endophytes, 31 of those were found in all plant species, indicating a high level of conservation. Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Chloroflexi were the top five dominant phyla. Plant species identity was a key determinant shaping the seed endophytic bacteriome. ACC deaminase activity, siderophores production and secretion of lytic enzymes were common functions shown by isolated bacteria. Our results demonstrate that highly diverse and beneficial bacterial populations are hosted by seeds of alpine grassland species to ensure the establishment of best bacterial symbionts for the next generation. This information is useful for crop improvement by reinstating beneficial seed microbial diversities for high-quality forage and crop seeds.
Collapse
Affiliation(s)
- Danni Liang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Jiayuguan West Roadd 768, Lanzhou, Gansu, 730020, China
| | - Jianxiu Guo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Jiayuguan West Roadd 768, Lanzhou, Gansu, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Jiayuguan West Roadd 768, Lanzhou, Gansu, 730020, China
| | - Saman Bowatte
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Jiayuguan West Roadd 768, Lanzhou, Gansu, 730020, China.,AgResearch Limited, Grasslands Research Center, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| |
Collapse
|
11
|
Zarkani AA, Schikora A. Mechanisms adopted by Salmonella to colonize plant hosts. Food Microbiol 2021; 99:103833. [PMID: 34119117 DOI: 10.1016/j.fm.2021.103833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Fruits and vegetables consumed fresh or as minimally-processed produce, have multiple benefits for our diet. Unfortunately, they bring a risk of food-borne diseases, for example salmonellosis. Interactions between Salmonella and crop plants are indeed a raising concern for the global health. Salmonella uses multiple strategies to manipulate the host defense system, including plant's defense responses. The main focus of this review are strategies used by this bacterium during the interaction with crop plants. Emphasis was put on how Salmonella avoids the plant defense responses and successfully colonizes plants. In addition, several factors were reviewed assessing their impact on Salmonella persistence and physiological adaptation to plants and plant-related environment. The understanding of those mechanisms, their regulation and use by the pathogen, while in contact with plants, has significant implication on the growth, harvest and processing steps in plant production system. Consequently, it requires both the authorities and science to advance and definite methods aiming at prevention of crop plants contamination. Thus, minimizing and/or eliminating the potential of human diseases.
Collapse
Affiliation(s)
- Azhar A Zarkani
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany; University of Baghdad, Department of Biotechnology, 10071, Baghdad, Iraq.
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany.
| |
Collapse
|
12
|
Bajunaid W, Haidar-Ahmad N, Kottarampatel AH, Ourida Manigat F, Silué N, F. Tchagang C, Tomaro K, Campbell-Valois FX. The T3SS of Shigella: Expression, Structure, Function, and Role in Vacuole Escape. Microorganisms 2020; 8:microorganisms8121933. [PMID: 33291504 PMCID: PMC7762205 DOI: 10.3390/microorganisms8121933] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Shigella spp. are one of the leading causes of infectious diarrheal diseases. They are Escherichia coli pathovars that are characterized by the harboring of a large plasmid that encodes most virulence genes, including a type III secretion system (T3SS). The archetypal element of the T3SS is the injectisome, a syringe-like nanomachine composed of approximately 20 proteins, spanning both bacterial membranes and the cell wall, and topped with a needle. Upon contact of the tip of the needle with the plasma membrane, the injectisome secretes its protein substrates into host cells. Some of these substrates act as translocators or effectors whose functions are key to the invasion of the cytosol and the cell-to-cell spread characterizing the lifestyle of Shigella spp. Here, we review the structure, assembly, function, and methods to measure the activity of the injectisome with a focus on Shigella, but complemented with data from other T3SS if required. We also present the regulatory cascade that controls the expression of T3SS genes in Shigella. Finally, we describe the function of translocators and effectors during cell-to-cell spread, particularly during escape from the vacuole, a key element of Shigella’s pathogenesis that has yet to reveal all of its secrets.
Collapse
Affiliation(s)
- Waad Bajunaid
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anwer Hasil Kottarampatel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caetanie F. Tchagang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
13
|
Intranasal Immunization of Mice with Multiepitope Chimeric Vaccine Candidate Based on Conserved Autotransporters SigA, Pic and Sap, Confers Protection against Shigella flexneri. Vaccines (Basel) 2020; 8:vaccines8040563. [PMID: 33019492 PMCID: PMC7712744 DOI: 10.3390/vaccines8040563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Shigellosis is a diarrheal disease and the World Health Organization prompts the development of a vaccine against Shigella flexneri. The autotransporters SigA, Pic and Sap are conserved among Shigella spp. We previously designed an in silico vaccine with immunodominat epitopes from those autotransporters, and the GroEL protein of S. typhi as an adjuvant. Here, we evaluated the immunogenicity and protective efficacy of the chimeric multiepitope protein, named rMESF, in mice against lethal infection with S. flexneri. rMESF was administered to mice alone through the intranasal (i.n.) route or accompanied with Complete Freund’s adjuvant (CFA) intradermically (i.d.), subcutaneously (s.c.), and intramuscular (i.m.), as well as with Imject alum (i.m.). All immunized mice increased IgG, IgG1, IgG2a, IgA and fecal IgA titers compared to PBS+CFA and PBS+alum control groups. Furthermore, i.n. immunization of mice with rMESF alone presented the highest titers of serum and fecal IgA. Cytokine levels (IFN-γ, TNF-α, IL-4, and IL-17) and lymphocyte proliferation increased in all experimental groups, with the highest lymphoproliferative response in i.n. mice immunized with rMESF alone, which presented 100% protection against S. flexneri. In summary, this vaccine vests protective immunity and highlights the importance of mucosal immunity activation for the elimination of S. flexneri.
Collapse
|
14
|
Kim JS, Yoon SJ, Park YJ, Kim SY, Ryu CM. Crossing the kingdom border: Human diseases caused by plant pathogens. Environ Microbiol 2020; 22:2485-2495. [PMID: 32307848 DOI: 10.1111/1462-2920.15028] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Interactions between pathogenic microorganisms and their hosts are varied and complex, encompassing open-field scale interactions to interactions at the molecular level. The capacity of plant pathogenic bacteria and fungi to cause diseases in human and animal systems was, until recently, considered of minor importance. However, recent evidence suggests that animal and human infections caused by plant pathogenic fungi, bacteria and viruses may have critical impacts on human and animal health and safety. This review analyses previous research on plant pathogens as causal factors of animal illness. In addition, a case study involving disruption of type III effector-mediated phagocytosis in a human cell line upon infection with an opportunistic phytopathogen, Pseudomonas syringae pv. tomato, is discussed. Further knowledge regarding the molecular interactions between plant pathogens and human and animal hosts is needed to understand the extent of disease incidence and determine mechanisms for disease prevention.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Seon-Yeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| |
Collapse
|
15
|
Schierstaedt J, Grosch R, Schikora A. Agricultural production systems can serve as reservoir for human pathogens. FEMS Microbiol Lett 2020; 366:5715908. [PMID: 31981360 DOI: 10.1093/femsle/fnaa016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Food-borne diseases are a threat to human health and can cause severe economic losses. Nowadays, in a growing and increasingly interconnected world, food-borne diseases need to be dealt with in a global manner. In order to tackle this issue, it is essential to consider all possible entry routes of human pathogens into the production chain. Besides the post-harvest handling of the fresh produce itself, also the prevention of contamination in livestock and agricultural soils are of particular importance. While the monitoring of human pathogens and intervening measures are relatively easy to apply in livestock and post-harvest, the investigation of the prevention strategies in crop fields is a challenging task. Furthermore, crop fields are interconnected with livestock via fertilizers and feed; therefore, a poor hygiene management can cause cross-contamination. In this review, we highlight the possible contamination of crop plants by bacterial human pathogens via the rhizosphere, their interaction with the plant and possible intervention strategies. Furthermore, we discuss critical issues and questions that are still open.
Collapse
Affiliation(s)
- Jasper Schierstaedt
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Rita Grosch
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| |
Collapse
|