1
|
Gachie SW, Muhire A, Li D, Kawamoto A, Takeda-Kamiya N, Goto Y, Sato M, Toyooka K, Yoshimura R, Takami T, Zhang L, Kurisu G, Terachi T, Sakamoto W. The thylakoid membrane remodeling protein VIPP1 forms bundled oligomers in tobacco chloroplasts. PLANT PHYSIOLOGY 2025; 198:kiaf137. [PMID: 40198871 PMCID: PMC12043068 DOI: 10.1093/plphys/kiaf137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
The thylakoid membrane (TM) serves as the scaffold for oxygen-evolving photosynthesis, hosting the protein complexes responsible for the light reactions and ATP synthesis. Vesicle inducing protein in plastid 1 (VIPP1), a key protein in TM remodeling, has been recognized as essential for TM homeostasis. In vitro studies of cyanobacterial VIPP1 demonstrated its ability to form large homo-oligomers (2 MDa) manifesting as ring-like or filament-like assemblies associated with membranes. Similarly, VIPP1 in Chlamydomonas reinhardtii assembles into rods that encapsulate liposomes or into stacked spiral structures. However, the nature of VIPP1 assemblies in chloroplasts, particularly in Arabidopsis, remains uncharacterized. Here, we expressed Arabidopsis thaliana VIPP1 fused to GFP (AtVIPP1-GFP) in tobacco (Nicotiana tabacum) chloroplasts and performed transmission electron microscopy (TEM). A purified AtVIPP1-GFP fraction was enriched with long filamentous tubule-like structures. Detailed TEM observations of chloroplasts in fixed resin-embedded tissues identified VIPP1 assemblies in situ that appeared to colocalize with GFP fluorescence. Electron tomography demonstrated that the AtVIPP1 oligomers consisted of bundled filaments near membranes, some of which appeared connected to the TM or inner chloroplast envelope at their contact sites. The observed bundles were never detected in wild-type Arabidopsis but were observed in Arabidopsis vipp1 mutants expressing AtVIPP1-GFP. Taken together, we propose that the bundled filaments are the dominant AtVIPP1 oligomers that represent its static state in vivo.
Collapse
Affiliation(s)
- Sarah W Gachie
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Alexandre Muhire
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Di Li
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriko Takeda-Kamiya
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yumi Goto
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Yoshimura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Lingang Zhang
- School of Life Sciences, Inner Mongolia University/Key Laboratory of Herbage and Endemic Crop Biotechnology, Hohhot 010070, China
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toru Terachi
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
2
|
Ostermeier M, Garibay-Hernández A, Holzer VJC, Schroda M, Nickelsen J. Structure, biogenesis, and evolution of thylakoid membranes. THE PLANT CELL 2024; 36:4014-4035. [PMID: 38567528 PMCID: PMC11448915 DOI: 10.1093/plcell/koae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes (TMs) that convert sunlight into chemical energy. These membranes house PSII and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, TMs have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas TMs in cyanobacteria are relatively simple, they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of TM architectures in phototrophs and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.
Collapse
Affiliation(s)
| | | | | | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Perez-Boerema A, Engel BD, Wietrzynski W. Evolution of Thylakoid Structural Diversity. Annu Rev Cell Dev Biol 2024; 40:169-193. [PMID: 38950450 DOI: 10.1146/annurev-cellbio-120823-022747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.
Collapse
|
4
|
Kreis E, König K, Misir M, Niemeyer J, Sommer F, Schroda M. TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response. PLANT PHYSIOLOGY 2023; 193:1772-1796. [PMID: 37310689 PMCID: PMC10602608 DOI: 10.1093/plphys/kiad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
In Chlamydomonas (Chlamydomonas reinhardtii), the VESICLE-INDUCING PROTEIN IN PLASTIDS 1 and 2 (VIPP1 and VIPP2) play roles in the sensing and coping with membrane stress and in thylakoid membrane biogenesis. To gain more insight into these processes, we aimed to identify proteins interacting with VIPP1/2 in the chloroplast and chose proximity labeling (PL) for this purpose. We used the transient interaction between the nucleotide exchange factor CHLOROPLAST GRPE HOMOLOG 1 (CGE1) and the stromal HEAT SHOCK PROTEIN 70B (HSP70B) as test system. While PL with APEX2 and BioID proved to be inefficient, TurboID resulted in substantial biotinylation in vivo. TurboID-mediated PL with VIPP1/2 as baits under ambient and H2O2 stress conditions confirmed known interactions of VIPP1 with VIPP2, HSP70B, and the CHLOROPLAST DNAJ HOMOLOG 2 (CDJ2). Proteins identified in the VIPP1/2 proxiomes can be grouped into proteins involved in the biogenesis of thylakoid membrane complexes and the regulation of photosynthetic electron transport, including PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1). A third group comprises 11 proteins of unknown function whose genes are upregulated under chloroplast stress conditions. We named them VIPP PROXIMITY LABELING (VPL). In reciprocal experiments, we confirmed VIPP1 in the proxiomes of VPL2 and PGRL1. Our results demonstrate the robustness of TurboID-mediated PL for studying protein interaction networks in the chloroplast of Chlamydomonas and pave the way for analyzing functions of VIPPs in thylakoid biogenesis and stress responses.
Collapse
Affiliation(s)
- Elena Kreis
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Katharina König
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Melissa Misir
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Chen J. Chloroplast protein complexes identified by TurboID in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 193:174-176. [PMID: 37379560 PMCID: PMC10469532 DOI: 10.1093/plphys/kiad368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Affiliation(s)
- Jiawen Chen
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists, Rockville, MD, USA
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
6
|
Jung JH, Seo PJ, Oh E, Kim J. Temperature perception by plants. TRENDS IN PLANT SCIENCE 2023; 28:924-940. [PMID: 37045740 DOI: 10.1016/j.tplants.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
7
|
Vidal‐Meireles A, Kuntam S, Széles E, Tóth D, Neupert J, Bock R, Tóth SZ. The lifetime of the oxygen-evolving complex subunit PSBO depends on light intensity and carbon availability in Chlamydomonas. PLANT, CELL & ENVIRONMENT 2023; 46:422-439. [PMID: 36320098 PMCID: PMC10100022 DOI: 10.1111/pce.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
PSBO is essential for the assembly of the oxygen-evolving complex in plants and green algae. Despite its importance, we lack essential information on its lifetime and how it depends on the environmental conditions. We have generated nitrate-inducible PSBO amiRNA lines in the green alga Chlamydomonas reinhardtii. Transgenic strains grew normally under non-inducing conditions, and their photosynthetic performance was comparable to the control strain. Upon induction of the PSBO amiRNA constructs, cell division halted. In acetate-containing medium, cellular PSBO protein levels decreased by 60% within 24 h in the dark, by 75% in moderate light, and in high light, the protein completely degraded. Consequently, the photosynthetic apparatus became strongly damaged, probably due to 'donor-side-induced photoinhibition', and cellular ultrastructure was also severely affected. However, in the absence of acetate during induction, PSBO was remarkably stable at all light intensities and less substantial changes occurred in photosynthesis. Our results demonstrate that the lifetime of PSBO strongly depends on the light intensity and carbon availability, and thus, on the metabolic status of the cells. We also confirm that PSBO is required for photosystem II stability in C. reinhardtii and demonstrate that its specific loss also entails substantial changes in cell morphology and cell cycle.
Collapse
Affiliation(s)
- André Vidal‐Meireles
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Present address:
Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms‐Universität Münster (WWU)MünsterGermany
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
| | - Eszter Széles
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Dávid Tóth
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Juliane Neupert
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Szilvia Z. Tóth
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
| |
Collapse
|
8
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Niemeyer J, Schroda M. New destination vectors facilitate Modular Cloning for Chlamydomonas. Curr Genet 2022; 68:531-536. [PMID: 35429260 PMCID: PMC9279246 DOI: 10.1007/s00294-022-01239-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
Synthetic Biology is revolutionizing biological research by introducing principles of mechanical engineering, including the standardization of genetic parts and standardized part assembly routes. Both are realized in the Modular Cloning (MoClo) strategy. MoClo allows for the rapid and robust assembly of individual genes and multigene clusters, enabling iterative cycles of gene design, construction, testing, and learning in short time. This is particularly true if generation times of target organisms are short, as is the case for the unicellular green alga Chlamydomonas reinhardtii. Testing a gene of interest in Chlamydomonas with MoClo requires two assembly steps, one for the gene of interest itself and another to combine it with a selection marker. To reduce this to a single assembly step, we constructed five new destination vectors. They contain genes conferring resistance to commonly used antibiotics in Chlamydomonas and a site for the direct assembly of basic genetic parts. The vectors employ red/white color selection and, therefore, do not require costly compounds like X-gal and IPTG. mCherry expression is used to demonstrate the functionality of these vectors.
Collapse
Affiliation(s)
- Justus Niemeyer
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany.
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany.
| |
Collapse
|
10
|
Redekop P, Sanz-Luque E, Yuan Y, Villain G, Petroutsos D, Grossman AR. Transcriptional regulation of photoprotection in dark-to-light transition-More than just a matter of excess light energy. SCIENCE ADVANCES 2022; 8:eabn1832. [PMID: 35658034 PMCID: PMC9166400 DOI: 10.1126/sciadv.abn1832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/18/2022] [Indexed: 05/22/2023]
Abstract
In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce nonphotochemical quenching to avoid photodamage and trigger expression of "photoprotective" genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, photosynthetic electron transport, and carbon dioxide on induction of the photoprotective genes (LHCSR1, LHCSR3, and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity and was independently modulated by blue and ultraviolet B radiation through specific photoreceptors; only LHCSR3 was strongly controlled by carbon dioxide levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.
Collapse
Affiliation(s)
- Petra Redekop
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Corresponding author. (E.S.-L.); (P.R.)
| | - Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14071 Cordoba, Spain
- Corresponding author. (E.S.-L.); (P.R.)
| | - Yizhong Yuan
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Gaelle Villain
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Dimitris Petroutsos
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Gupta TK, Klumpe S, Gries K, Heinz S, Wietrzynski W, Ohnishi N, Niemeyer J, Spaniol B, Schaffer M, Rast A, Ostermeier M, Strauss M, Plitzko JM, Baumeister W, Rudack T, Sakamoto W, Nickelsen J, Schuller JM, Schroda M, Engel BD. Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell 2021; 184:3643-3659.e23. [PMID: 34166613 DOI: 10.1016/j.cell.2021.05.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.
Collapse
Affiliation(s)
- Tilak Kumar Gupta
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sven Klumpe
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Karin Gries
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Steffen Heinz
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Wojciech Wietrzynski
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Justus Niemeyer
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Benjamin Spaniol
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anna Rast
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Matthias Ostermeier
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 17C, Canada
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, 44801 Bochum, Germany; Department of Biophysics, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Jan M Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany.
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
12
|
Junglas B, Huber ST, Heidler T, Schlösser L, Mann D, Hennig R, Clarke M, Hellmann N, Schneider D, Sachse C. PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell 2021; 184:3674-3688.e18. [PMID: 34166616 DOI: 10.1016/j.cell.2021.05.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/01/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
PspA is the main effector of the phage shock protein (Psp) system and preserves the bacterial inner membrane integrity and function. Here, we present the 3.6 Å resolution cryoelectron microscopy (cryo-EM) structure of PspA assembled in helical rods. PspA monomers adopt a canonical ESCRT-III fold in an extended open conformation. PspA rods are capable of enclosing lipids and generating positive membrane curvature. Using cryo-EM, we visualized how PspA remodels membrane vesicles into μm-sized structures and how it mediates the formation of internalized vesicular structures. Hotspots of these activities are zones derived from PspA assemblies, serving as lipid transfer platforms and linking previously separated lipid structures. These membrane fusion and fission activities are in line with the described functional properties of bacterial PspA/IM30/LiaH proteins. Our structural and functional analyses reveal that bacterial PspA belongs to the evolutionary ancestry of ESCRT-III proteins involved in membrane remodeling.
Collapse
Affiliation(s)
- Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Stefan T Huber
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Thomas Heidler
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Raoul Hennig
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mairi Clarke
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany.
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
13
|
Santhanagopalan I, Wong R, Mathur T, Griffiths H. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4604-4624. [PMID: 33893473 PMCID: PMC8320531 DOI: 10.1093/jxb/erab169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/19/2023]
Abstract
The inducible carbon concentration mechanism (CCM) in Chlamydomonas reinhardtii has been well defined from a molecular and ultrastructural perspective. Inorganic carbon transport proteins, and strategically located carbonic anhydrases deliver CO2 within the chloroplast pyrenoid matrix where Rubisco is packaged. However, there is little understanding of the fundamental signalling and sensing processes leading to CCM induction. While external CO2 limitation has been believed to be the primary cue, the coupling between energetic supply and inorganic carbon demand through regulatory feedback from light harvesting and photorespiration signals could provide the original CCM trigger. Key questions regarding the integration of these processes are addressed in this review. We consider how the chloroplast functions as a crucible for photosynthesis, importing and integrating nuclear-encoded components from the cytoplasm, and sending retrograde signals to the nucleus to regulate CCM induction. We hypothesize that induction of the CCM is associated with retrograde signals associated with photorespiration and/or light stress. We have also examined the significance of common evolutionary pressures for origins of two co-regulated processes, namely the CCM and photorespiration, in addition to identifying genes of interest involved in transcription, protein folding, and regulatory processes which are needed to fully understand the processes leading to CCM induction.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Rachel Wong
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Tanya Mathur
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Messant M, Krieger-Liszkay A, Shimakawa G. Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport. Cells 2021; 10:cells10051216. [PMID: 34065690 PMCID: PMC8155901 DOI: 10.3390/cells10051216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many levels, including light absorption in antenna, electron transfer reactions in the reaction centers, and consumption of ATP and NADPH in different metabolic pathways. Many regulatory mechanisms involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, a certain number of chloroplast proteins exist in different oligomerization states, which temporally associate to the thylakoid membrane and modulate their activity. This review starts by giving a short overview of the lipid composition of the chloroplast membranes, followed by describing supercomplex formation in cyclic electron flow. Protein movements involved in the various mechanisms of non-photochemical quenching, including thermal dissipation, state transitions and the photosystem II damage–repair cycle are detailed. We highlight the importance of changes in the oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the factors that may be responsible for these changes. Photosynthesis-related protein movements and organization states of certain proteins all play a role in acclimation of the photosynthetic organism to the environment.
Collapse
Affiliation(s)
- Marine Messant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France;
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France;
- Correspondence:
| | - Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan;
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
15
|
Kleine T, Nägele T, Neuhaus HE, Schmitz-Linneweber C, Fernie AR, Geigenberger P, Grimm B, Kaufmann K, Klipp E, Meurer J, Möhlmann T, Mühlhaus T, Naranjo B, Nickelsen J, Richter A, Ruwe H, Schroda M, Schwenkert S, Trentmann O, Willmund F, Zoschke R, Leister D. Acclimation in plants - the Green Hub consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:23-40. [PMID: 33368770 DOI: 10.1111/tpj.15144] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | | | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Peter Geigenberger
- Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Torsten Möhlmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Andreas Richter
- Physiology of Plant Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Serena Schwenkert
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Oliver Trentmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Reimo Zoschke
- Translational Regulation in Plants, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
16
|
Nymark M, Grønbech Hafskjold MC, Volpe C, Fonseca DDM, Sharma A, Tsirvouli E, Serif M, Winge P, Finazzi G, Bones AM. Functional studies of CpSRP54 in diatoms show that the mechanism of thylakoid protein insertion differs from that in plants and green algae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:113-132. [PMID: 33372269 DOI: 10.1111/tpj.15149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The chloroplast signal recognition particle 54 kDa (CpSRP54) protein is a member of the CpSRP pathway known to target proteins to thylakoid membranes in plants and green algae. Loss of CpSRP54 in the marine diatom Phaeodactylum tricornutum lowers the accumulation of a selection of chloroplast-encoded subunits of photosynthetic complexes, indicating a role in the co-translational part of the CpSRP pathway. In contrast to plants and green algae, absence of CpSRP54 does not have a negative effect on the content of light-harvesting antenna complex proteins and pigments in P. tricornutum, indicating that the diatom CpSRP54 protein has not evolved to function in the post-translational part of the CpSRP pathway. Cpsrp54 KO mutants display altered photophysiological responses, with a stronger induction of photoprotective mechanisms and lower growth rates compared to wild type when exposed to increased light intensities. Nonetheless, their phenotype is relatively mild, thanks to the activation of mechanisms alleviating the loss of CpSRP54, involving upregulation of chaperones. We conclude that plants, green algae, and diatoms have evolved differences in the pathways for co-translational and post-translational insertion of proteins into the thylakoid membranes.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Marthe Caroline Grønbech Hafskjold
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Giovanni Finazzi
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble (IRIG), CEA-Grenoble, Grenoble, 38000, France
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
17
|
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296:100338. [PMID: 33497624 PMCID: PMC7966870 DOI: 10.1016/j.jbc.2021.100338] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
18
|
|