1
|
Rodrigues TM, de Almeida AR, de Nicolai J, dos Santos IS, Machado SR. Interconnected idioblasts in Peltaea polymorpha: a novel component of the mucilage-secretory apparatus in Malvaceae. AOB PLANTS 2025; 17:plae063. [PMID: 39876986 PMCID: PMC11773387 DOI: 10.1093/aobpla/plae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025]
Abstract
The anatomical and cytological characteristics of the mucilage-secretory system have been widely studied in Malvaceae. However, conflicting information regarding the morphological nature of secretory structures exists, and some remain poorly understood. In this sense, some secretory structures in Malvaceae are not characterized as typical isolated idioblasts, canals, or cavities. Here, we describe a novel component of the mucilage-secretory apparatus in the Malvaceae family. Samples of the shoot apex, mature stem and fully expanded leaves were obtained from adult Peltaea polymorpha, which grow in the Cerrado (Brazilian savanna). The samples were processed using standard light and transmission electron microscopy methods. Mucilage cells occurred in the cortex and pith of petioles and stems, and in the midrib of leaves. These cells originate early in the stem apex from successive divisions of cells of the fundamental meristem, resulting in a row of interconnected secretory cells enveloped by a sheath of parenchyma cells devoid of secretory activity. Mucilage is stored in both protoplast and apoplast. In the same row, some cells filled with mucilage become very swollen and compress the neighbouring idioblasts that become flattened. This phenomenon results in a sandwich panel structure consisting of the swollen transversal walls of adjacent cells. As the differentiation progresses, the transversal walls of the rowed mucilage cells became very swollen, multilayered, and porous. Cytoplasmic strands cross such transversal walls connecting rowed cells. Mucilage-secreting cells in P. polymorpha are interconnected idioblasts and represent a novel component of the mucilage-secretory apparatus in Malvaceae. These findings open new avenues for understanding the structure and dynamics of mucilage-secreting cells from a functional perspective.
Collapse
Affiliation(s)
- Tatiane Maria Rodrigues
- Department of Biodiversity and Biostatistics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Professor Antônio Celso Wagner Zagnin street, 250, District of Rubião Júnior, 18618-970, Botucatu City, São Paulo State, Brazil
- Interunit Postgraduate Program in Plant Biology, Institute of Biosciences of Botucatu and Rio Claro, São Paulo State University (UNESP), Brazil
| | - Aline Rodrigues de Almeida
- Department of Biodiversity and Biostatistics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Professor Antônio Celso Wagner Zagnin street, 250, District of Rubião Júnior, 18618-970, Botucatu City, São Paulo State, Brazil
| | - Juan de Nicolai
- Interunit Postgraduate Program in Plant Biology, Institute of Biosciences of Botucatu and Rio Claro, São Paulo State University (UNESP), Brazil
| | - Igor Soares dos Santos
- Interunit Postgraduate Program in Plant Biology, Institute of Biosciences of Botucatu and Rio Claro, São Paulo State University (UNESP), Brazil
| | - Silvia Rodrigues Machado
- Department of Biodiversity and Biostatistics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Professor Antônio Celso Wagner Zagnin street, 250, District of Rubião Júnior, 18618-970, Botucatu City, São Paulo State, Brazil
- Interunit Postgraduate Program in Plant Biology, Institute of Biosciences of Botucatu and Rio Claro, São Paulo State University (UNESP), Brazil
| |
Collapse
|
2
|
Fradera-Soler M, Mravec J, Schulz A, Taboryski R, Jørgensen B, Grace OM. Revisiting an ecophysiological oddity: Hydathode-mediated foliar water uptake in Crassula species from southern Africa. PLANT, CELL & ENVIRONMENT 2024; 47:460-481. [PMID: 37876364 DOI: 10.1111/pce.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Hydathodes are usually associated with water exudation in plants. However, foliar water uptake (FWU) through the hydathodes has long been suspected in the leaf-succulent genus Crassula (Crassulaceae), a highly diverse group in southern Africa, and, to our knowledge, no empirical observations exist in the literature that unequivocally link FWU to hydathodes in this genus. FWU is expected to be particularly beneficial on the arid western side of southern Africa, where up to 50% of Crassula species occur and where periodically high air humidity leads to fog and/or dew formation. To investigate if hydathode-mediated FWU is operational in different Crassula species, we used the apoplastic fluorescent tracer Lucifer Yellow in combination with different imaging techniques. Our images of dye-treated leaves confirm that hydathode-mediated FWU does indeed occur in Crassula and that it might be widespread across the genus. Hydathodes in Crassula serve as moisture-harvesting structures, besides their more common purpose of guttation, an adaptation that has likely played an important role in the evolutionary history of the genus. Our observations suggest that ability for FWU is independent of geographical distribution and not restricted to arid environments under fog influence, as FWU is also operational in Crassula species from the rather humid eastern side of southern Africa. Our observations point towards no apparent link between FWU ability and overall leaf surface wettability in Crassula. Instead, the hierarchically sculptured leaf surfaces of several Crassula species may facilitate FWU due to hydrophilic leaf surface microdomains, even in seemingly hydrophobic species. Overall, these results confirm the ecophysiological relevance of hydathode-mediated FWU in Crassula and reassert the importance of atmospheric humidity for some arid-adapted plant groups.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Plant Science and Biodiversity Center, Nitra, Slovakia
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rafael Taboryski
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Lyngby, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Fonollá A, Hormaza JI, Losada JM. Foliar Pectins and Physiology of Diploid and Autotetraploid Mango Genotypes under Water Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3738. [PMID: 37960094 PMCID: PMC10650725 DOI: 10.3390/plants12213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
The cultivation of mango in Mediterranean-type climates is challenged by the depletion of freshwater. Polyploids are alternative genotypes with potential greater water use efficiency, but field evaluations of the anatomy and physiology of conspecific adult polyploid trees under water stress remain poorly explored. We combined field anatomical evaluations with measurements of leaf water potential (Ψl) and stomatal conductance (Gs) comparing one diploid and one autotetraploid tree per treatment with and without irrigation during dry summers (when fruits develop). Autotetraploid leaves displayed lower Ψl and Gs in both treatments, but the lack of irrigation only affected Gs. Foliar cells of the adaxial epidermis and the spongy mesophyll contained linear pectin epitopes, whereas branched pectins were localized in the abaxial epidermis, the chloroplast membrane, and the sieve tube elements of the phloem. Cell and fruit organ size was larger in autotetraploid than in diploid mango trees, but the sugar content in the fruits was similar between both cytotypes. Specific cell wall hygroscopic pectins correlate with more stable Ψl of autotetraploid leaves under soil water shortage, keeping lower Gs compared with diploids. These preliminary results point to diploids as more susceptible to water deficits than tetraploids.
Collapse
Affiliation(s)
| | | | - Juan M. Losada
- Institute for Mediterranean and Subtropical Horticulture ‘La Mayora’ (IHSM La Mayora—CSIC—UMA), Avda. Dr. Wienberg s/n, 29750 Malaga, Spain; (A.F.); (J.I.H.)
| |
Collapse
|
4
|
Li C, Mo Y, Wang N, Xing L, Qu Y, Chen Y, Yuan Z, Ali A, Qi J, Fernández V, Wang Y, Kopittke PM. The overlooked functions of trichomes: Water absorption and metal detoxication. PLANT, CELL & ENVIRONMENT 2023; 46:669-687. [PMID: 36581782 DOI: 10.1111/pce.14530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Trichomes are epidermal outgrowths on plant shoots. Their roles in protecting plants against herbivores and in the biosynthesis of specialized metabolites have long been recognized. Recently, studies are increasingly showing that trichomes also play important roles in water absorption and metal detoxication, with these roles having important implications for ecology, the environment, and agriculture. However, these two functions of trichomes have been largely overlooked and much remains unknown. In this review, we show that the trichomes of 37 plant species belonging to 14 plant families are involved in water absorption, while the trichomes of 33 species from 13 families are capable of sequestering metals within their trichomes. The ability of trichomes to absorb water results from their decreased hydrophobicity compared to the remainder of the leaf surface as well as the presence of special structures for collecting and absorbing water. In contrast, the metal detoxication function of trichomes results not only from the good connection of their basal cells to the underlying vascular tissues, but also from the presence of metal-chelating ligands and transporters within the trichomes themselves. Knowledge gaps and critical future research questions regarding these two trichome functions are highlighted. This review improves our understanding on trichomes.
Collapse
Affiliation(s)
- Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yingying Mo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Nina Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Longyi Xing
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qu
- Baoji Academy of Agriculture Sciences, Baoji, China
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zuoqiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- College of Life Sciences, Hebei University, Hebei, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Victoria Fernández
- School of Forest Engineering, Technical University of Madrid, Madrid, Spain
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Arsic M, Persson DP, Schjoerring JK, Thygesen LG, Lombi E, Doolette CL, Husted S. Foliar-applied manganese and phosphorus in deficient barley: Linking absorption pathways and leaf nutrient status. PHYSIOLOGIA PLANTARUM 2022; 174:e13761. [PMID: 36004733 PMCID: PMC9543583 DOI: 10.1111/ppl.13761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Foliar fertilization delivers essential nutrients directly to plant tissues, reducing excessive soil fertilizer applications that can lead to eutrophication following nutrient leaching. Foliar nutrient absorption is a dynamic process affected by leaf surface structure and composition, plant nutrient status, and ion physicochemical properties. We applied multiple methods to study the foliar absorption behaviors of manganese (Mn) and phosphorus (P) in nutrient-deficient spring barley (Hordeum vulgare) at two growth stages. Nutrient-specific chlorophyll a fluorescence assays were used to visualize leaf nutrient status, while laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualize foliar absorption pathways for P and Mn ions. Rapid Mn absorption was facilitated by a relatively thin cuticle with a low abundance of waxes and a higher stomatal density in Mn-deficient plants. Following absorption, Mn accumulated in epidermal cells and in the photosynthetically active mesophyll, enabling a fast (6 h) restoration of Mn-dependent photosynthetic processes. Conversely, P-deficient plants developed thicker cuticles and epidermal cell walls, which reduced the penetration of P across the leaf surface. Foliar-applied P accumulated in trichomes and fiber cells above leaf veins without reaching the mesophyll and, as a consequence, no restoration of P-dependent photosynthetic processes was observed. This study reveals new links between leaf surface morphology, foliar-applied ion absorption pathways, and the restoration of affected physiological processes in nutrient-deficient leaves. Understanding that ions may have different absorption pathways across the leaf surface is critical for the future development of efficient fertilization strategies for crops in nutrient-limited soils.
Collapse
Affiliation(s)
- Maja Arsic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- University of South AustraliaFuture Industries InstituteMawson LakesSouth AustraliaAustralia
- Present address:
CSIRO Agriculture and Food, Queensland Biosciences PrecinctSt. LuciaQueenslandAustralia
| | - Daniel P. Persson
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Jan K. Schjoerring
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Lisbeth G. Thygesen
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CDenmark
| | - Enzo Lombi
- University of South AustraliaFuture Industries InstituteMawson LakesSouth AustraliaAustralia
| | - Casey L. Doolette
- University of South AustraliaFuture Industries InstituteMawson LakesSouth AustraliaAustralia
| | - Søren Husted
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
6
|
Bryant C, Fuenzalida TI, Zavafer A, Nguyen HT, Brothers N, Harris RJ, Beckett HAA, Holmlund HI, Binks O, Ball MC. Foliar water uptake via cork warts in mangroves of the Sonneratia genus. PLANT, CELL & ENVIRONMENT 2021; 44:2925-2937. [PMID: 34118083 DOI: 10.1111/pce.14129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Foliar water uptake (FWU) occurs in plants of diverse ecosystems; however, the diversity of pathways and their associated FWU kinetics remain poorly resolved. We characterized a novel FWU pathway in two mangrove species of the Sonneratia genus, S. alba and S. caseolaris. Further, we assessed the influence of leaf wetting duration, wet-dry seasonality and leaf dehydration on leaf conductance to surface water (Ksurf ). The symplastic tracer dye, disodium fluorescein, revealed living cells subtending and encircling leaf epidermal structures known as cork warts as a pathway of FWU entry into the leaf. Rehydration kinetics experiments revealed a novel mode of FWU, with slow and steady rates of water uptake persistent over a duration of 12 hr. Ksurf increased with longer durations of leaf wetting and was greater in leaves with more negative water potentials at the initiation of leaf wetting. Ksurf declined by 68% between wet and dry seasons. Our results suggest that FWU via cork warts in Sonneratia sp. may be rate limited and under active regulation. We conclude that FWU pathways in halophytes may require ion exclusion to avoid uptake of salt when inundated, paralleling the capacity of halophyte roots for ion selectivity during water acquisition.
Collapse
Affiliation(s)
- Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Tomas I Fuenzalida
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Alonso Zavafer
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Hoa T Nguyen
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, Vietnam
| | - Nigel Brothers
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Rosalie J Harris
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Helen I Holmlund
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Pepperdine University, Natural Science Division, Malibu, CA, 90263, USA
| | - Oliver Binks
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|