1
|
Mérida-García R, Gálvez S, Solís I, Martínez-Moreno F, Camino C, Soriano JM, Sansaloni C, Ammar K, Bentley AR, Gonzalez-Dugo V, Zarco-Tejada PJ, Hernandez P. High-throughput phenotyping using hyperspectral indicators supports the genetic dissection of yield in durum wheat grown under heat and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1470520. [PMID: 39649812 PMCID: PMC11620856 DOI: 10.3389/fpls.2024.1470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 12/11/2024]
Abstract
High-throughput phenotyping (HTP) provides new opportunities for efficiently dissecting the genetic basis of drought-adaptive traits, which is essential in current wheat breeding programs. The combined use of HTP and genome-wide association (GWAS) approaches has been useful in the assessment of complex traits such as yield, under field stress conditions including heat and drought. The aim of this study was to identify molecular markers associated with yield (YLD) in elite durum wheat that could be explained using hyperspectral indices (HSIs) under drought field conditions in Mediterranean environments in Southern Spain. The HSIs were obtained from hyperspectral imagery collected during the pre-anthesis and anthesis crop stages using an airborne platform. A panel of 536 durum wheat lines were genotyped by sequencing (GBS, DArTseq) to determine population structure, revealing a lack of genetic structure in the breeding germplasm. The material was phenotyped for YLD and 19 HSIs for six growing seasons under drought field conditions at two locations in Andalusia, in southern Spain. GWAS analysis identified 740 significant marker-trait associations (MTAs) across all the durum wheat chromosomes, several of which were common for YLD and the HSIs, and can potentially be integrated into breeding programs. Candidate gene (CG) analysis uncovered genes related to important plant processes such as photosynthesis, regulatory biological processes, and plant abiotic stress tolerance. These results are novel in that they combine high-resolution hyperspectral imaging at the field scale with GWAS analysis in wheat. They also support the use of HSIs as useful tools for identifying chromosomal regions related to the heat and drought stress response in wheat, and pave the way for the integration of field HTP in wheat breeding programs.
Collapse
Affiliation(s)
- Rosa Mérida-García
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Ignacio Solís
- Department of Agronomy, ETSIA (University of Seville), Seville, Spain
| | | | - Carlos Camino
- European Commission (EC), Joint Research Centre (JRC), Ispra, Italy
| | - Jose Miguel Soriano
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - AGROTECNIO, Lleida, Spain
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Alison R. Bentley
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Victoria Gonzalez-Dugo
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pablo J. Zarco-Tejada
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science (FoS), and Faculty of Engineering, and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
2
|
Bohra A, Choudhary M, Bennett D, Joshi R, Mir RR, Varshney RK. Drought-tolerant wheat for enhancing global food security. Funct Integr Genomics 2024; 24:212. [PMID: 39535570 DOI: 10.1007/s10142-024-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Wheat is among the most produced grain crops of the world and alone provides a fifth of the world's calories and protein. Wheat has played a key role in food security since the crop served as a Neolithic founder crop for the establishment of world agriculture. Projections showing a decline in global wheat yields in changing climates imply that food security targets could be jeopardized. Increased frequency and intensity of drought occurrence is evident in major wheat-producing regions worldwide, and notably, the wheat-producing area under drought is projected to swell globally by 60% by the end of the 21st century. Wheat yields are significantly reduced due to changes in plant morphological, physiological, biochemical, and molecular activities in response to drought stress. Advances in wheat genetics, multi-omics technologies and plant phenotyping have enhanced the understanding of crop responses to drought conditions. Research has elucidated key genomic regions, candidate genes, signalling molecules and associated networks that orchestrate tolerance mechanisms under drought stress. Robust and low-cost selection tools are now available in wheat for screening genetic variations for drought tolerance traits. New breeding techniques and selection tools open a unique opportunity to tailor future wheat crop with optimal trait combinations that help withstand extreme drought. Adoption of the new wheat varieties will increase crop diversity in rain-fed agriculture and ensure sustainable improvements in crop yields to safeguard the world's food security in drier environments.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU campus, Ludhiana, 141001, India
| | - Dion Bennett
- Australian Grain technologies (AGT), Northam, WA, 6401, Australia
| | - Rohit Joshi
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Srinagar, 190025, Shalimar, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
3
|
Špundová M, Kučerová Z, Nožková V, Opatíková M, Procházková L, Klimeš P, Nauš J. What to Choose for Estimating Leaf Water Status-Spectral Reflectance or In vivo Chlorophyll Fluorescence? PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0243. [PMID: 39211292 PMCID: PMC11358408 DOI: 10.34133/plantphenomics.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
In the context of global climate change and the increasing need to study plant response to drought, there is a demand for easily, rapidly, and remotely measurable parameters that sensitively reflect leaf water status. Parameters with this potential include those derived from leaf spectral reflectance (R) and chlorophyll fluorescence. As each of these methods probes completely different leaf characteristics, their sensitivity to water loss may differ in different plant species and/or under different circumstances, making it difficult to choose the most appropriate method for estimating water status in a given situation. Here, we present a simple comparative analysis to facilitate this choice for leaf-level measurements. Using desiccation of tobacco (Nicotiana tabacum L. cv. Samsun) and barley (Hordeum vulgare L. cv. Bojos) leaves as a model case, we measured parameters of spectral R and chlorophyll fluorescence and then evaluated and compared their applicability by means of introduced coefficients (coefficient of reliability, sensitivity, and inaccuracy). This comparison showed that, in our case, chlorophyll fluorescence was more reliable and universal than spectral R. Nevertheless, it is most appropriate to use both methods simultaneously, as the specific ranking of their parameters according to the coefficient of reliability may indicate a specific scenario of changes in desiccating leaves.
Collapse
Affiliation(s)
- Martina Špundová
- Department of Biophysics, Faculty of Science,
Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Zuzana Kučerová
- Department of Biophysics, Faculty of Science,
Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science,
Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Monika Opatíková
- Department of Biophysics, Faculty of Science,
Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Lucie Procházková
- Department of Biophysics, Faculty of Science,
Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Pavel Klimeš
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Jan Nauš
- Department of Biophysics, Faculty of Science,
Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
4
|
Taylor SH. Phenotyping photosynthesis: yes we can. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:659-662. [PMID: 38307516 PMCID: PMC10837009 DOI: 10.1093/jxb/erad496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
This article comments on:
Keller B, Soto J, Steier A, Portilla-Benavides AE, Raatz B, Studer B, Walter A, Muller O, Urban MO. 2024. Linking photosynthesis and yield reveals a strategy to improve light use efficiency in a climbing bean breeding population. Journal of Experimental Botany 75, 901–916.
Collapse
Affiliation(s)
- Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
5
|
Knopf O, Castro A, Bendig J, Pude R, Kleist E, Poorter H, Rascher U, Muller O. Field phenotyping of ten wheat cultivars under elevated CO 2 shows seasonal differences in chlorophyll fluorescence, plant height and vegetation indices. FRONTIERS IN PLANT SCIENCE 2024; 14:1304751. [PMID: 38259917 PMCID: PMC10800489 DOI: 10.3389/fpls.2023.1304751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
In the context of climate change and global sustainable development goals, future wheat cultivation has to master various challenges at a time, including the rising atmospheric carbon dioxide concentration ([CO2]). To investigate growth and photosynthesis dynamics under the effects of ambient (~434 ppm) and elevated [CO2] (~622 ppm), a Free-Air CO2 Enrichment (FACE) facility was combined with an automated phenotyping platform and an array of sensors. Ten modern winter wheat cultivars (Triticum aestivum L.) were monitored over a vegetation period using a Light-induced Fluorescence Transient (LIFT) sensor, ground-based RGB cameras and a UAV equipped with an RGB and multispectral camera. The LIFT sensor enabled a fast quantification of the photosynthetic performance by measuring the operating efficiency of Photosystem II (Fq'/Fm') and the kinetics of electron transport, i.e. the reoxidation rates Fr1' and Fr2'. Our results suggest that elevated [CO2] significantly increased Fq'/Fm' and plant height during the vegetative growth phase. As the plants transitioned to the senescence phase, a pronounced decline in Fq'/Fm' was observed under elevated [CO2]. This was also reflected in the reoxidation rates Fr1' and Fr2'. A large majority of the cultivars showed a decrease in the harvest index, suggesting a different resource allocation and indicating a potential plateau in yield progression under e[CO2]. Our results indicate that the rise in atmospheric [CO2] has significant effects on the cultivation of winter wheat with strong manifestation during early and late growth.
Collapse
Affiliation(s)
- Oliver Knopf
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antony Castro
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Juliane Bendig
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ralf Pude
- INRES-Renewable Resources, University of Bonn, Rheinbach, Germany
| | - Einhard Kleist
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hendrik Poorter
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Uwe Rascher
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
6
|
Cudjoe DK, Virlet N, Castle M, Riche AB, Mhada M, Waine TW, Mohareb F, Hawkesford MJ. Field phenotyping for African crops: overview and perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1219673. [PMID: 37860243 PMCID: PMC10582954 DOI: 10.3389/fpls.2023.1219673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
Improvements in crop productivity are required to meet the dietary demands of the rapidly-increasing African population. The development of key staple crop cultivars that are high-yielding and resilient to biotic and abiotic stresses is essential. To contribute to this objective, high-throughput plant phenotyping approaches are important enablers for the African plant science community to measure complex quantitative phenotypes and to establish the genetic basis of agriculturally relevant traits. These advances will facilitate the screening of germplasm for optimum performance and adaptation to low-input agriculture and resource-constrained environments. Increasing the capacity to investigate plant function and structure through non-invasive technologies is an effective strategy to aid plant breeding and additionally may contribute to precision agriculture. However, despite the significant global advances in basic knowledge and sensor technology for plant phenotyping, Africa still lags behind in the development and implementation of these systems due to several practical, financial, geographical and political barriers. Currently, field phenotyping is mostly carried out by manual methods that are prone to error, costly, labor-intensive and may come with adverse economic implications. Therefore, improvements in advanced field phenotyping capabilities and appropriate implementation are key factors for success in modern breeding and agricultural monitoring. In this review, we provide an overview of the current state of field phenotyping and the challenges limiting its implementation in some African countries. We suggest that the lack of appropriate field phenotyping infrastructures is impeding the development of improved crop cultivars and will have a detrimental impact on the agricultural sector and on food security. We highlight the prospects for integrating emerging and advanced low-cost phenotyping technologies into breeding protocols and characterizing crop responses to environmental challenges in field experimentation. Finally, we explore strategies for overcoming the barriers and maximizing the full potential of emerging field phenotyping technologies in African agriculture. This review paper will open new windows and provide new perspectives for breeders and the entire plant science community in Africa.
Collapse
Affiliation(s)
- Daniel K. Cudjoe
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, United Kingdom
| | - Nicolas Virlet
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - March Castle
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - Andrew B. Riche
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - Manal Mhada
- AgroBiosciences Department, Mohammed VI Polytechnic University (UM6P), Benguérir, Morocco
| | - Toby W. Waine
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, United Kingdom
| | - Fady Mohareb
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, United Kingdom
| | | |
Collapse
|
7
|
Lauterberg M, Tschiersch H, Papa R, Bitocchi E, Neumann K. Engaging Precision Phenotyping to Scrutinize Vegetative Drought Tolerance and Recovery in Chickpea Plant Genetic Resources. PLANTS (BASEL, SWITZERLAND) 2023; 12:2866. [PMID: 37571019 PMCID: PMC10421427 DOI: 10.3390/plants12152866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Precise and high-throughput phenotyping (HTP) of vegetative drought tolerance in chickpea plant genetic resources (PGR) would enable improved screening for genotypes with low relative loss of biomass formation and reliable physiological performance. It could also provide a basis to further decipher the quantitative trait drought tolerance and recovery and gain a better understanding of the underlying mechanisms. In the context of climate change and novel nutritional trends, legumes and chickpea in particular are becoming increasingly important because of their high protein content and adaptation to low-input conditions. The PGR of legumes represent a valuable source of genetic diversity that can be used for breeding. However, the limited use of germplasm is partly due to a lack of available characterization data. The development of HTP systems offers a perspective for the analysis of dynamic plant traits such as abiotic stress tolerance and can support the identification of suitable genetic resources with a potential breeding value. Sixty chickpea accessions were evaluated on an HTP system under contrasting water regimes to precisely evaluate growth, physiological traits, and recovery under optimal conditions in comparison to drought stress at the vegetative stage. In addition to traits such as Estimated Biovolume (EB), Plant Height (PH), and several color-related traits over more than forty days, photosynthesis was examined by chlorophyll fluorescence measurements on relevant days prior to, during, and after drought stress. With high data quality, a wide phenotypic diversity for adaptation, tolerance, and recovery to drought was recorded in the chickpea PGR panel. In addition to a loss of EB between 72% and 82% after 21 days of drought, photosynthetic capacity decreased by 16-28%. Color-related traits can be used as indicators of different drought stress stages, as they show the progression of stress.
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| |
Collapse
|
8
|
Sun Y, Wen J, Gu L, Joiner J, Chang CY, van der Tol C, Porcar-Castell A, Magney T, Wang L, Hu L, Rascher U, Zarco-Tejada P, Barrett CB, Lai J, Han J, Luo Z. From remotely-sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part II-Harnessing data. GLOBAL CHANGE BIOLOGY 2023; 29:2893-2925. [PMID: 36802124 DOI: 10.1111/gcb.16646] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in "data desert" regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.
Collapse
Affiliation(s)
- Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jiaming Wen
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joanna Joiner
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Christine Y Chang
- US Department of Agriculture, Agricultural Research Service, Adaptive Cropping Systems Laboratory, Beltsville, Maryland, USA
| | - Christiaan van der Tol
- Affiliation Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pablo Zarco-Tejada
- School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Sharwood RE, Quick WP, Sargent D, Estavillo GM, Silva-Perez V, Furbank RT. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3085-3108. [PMID: 35274686 DOI: 10.1093/jxb/erac081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - W Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | | | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Fu P, Montes CM, Siebers MH, Gomez-Casanovas N, McGrath JM, Ainsworth EA, Bernacchi CJ. Advances in field-based high-throughput photosynthetic phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3157-3172. [PMID: 35218184 PMCID: PMC9126737 DOI: 10.1093/jxb/erac077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/22/2023]
Abstract
Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing tools to finer spatial scales and increasing the number and complexity of phenotypes that can be extracted. In this review, we outline the photosynthetic phenotypes of interest to the plant science community and describe the advances in high-throughput techniques to characterize photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based experiments or breeding trials. We will accomplish this objective by presenting six lessons learned thus far through the development and application of proximal/remote sensing-based measurements and the accompanying statistical analyses. We will conclude by outlining what we perceive as the current limitations, bottlenecks, and opportunities facing HTP of photosynthesis.
Collapse
Affiliation(s)
- Peng Fu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher M Montes
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Matthew H Siebers
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Nuria Gomez-Casanovas
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin M McGrath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Elizabeth A Ainsworth
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carl J Bernacchi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Xia Q, Fu L, Tang H, Song L, Tan J, Guo Y. Sensing and classification of rice ( Oryza sativa L.) drought stress levels based on chlorophyll fluorescence. PHOTOSYNTHETICA 2022; 60:102-109. [PMID: 39649002 PMCID: PMC11559473 DOI: 10.32615/ps.2022.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/25/2022] [Indexed: 12/10/2024]
Abstract
Sensing and classification of drought stress levels are very important to agricultural production. In this work, rice drought stress levels were classified based on the commonly used chlorophyll a fluorescence (ChlF) parameter (Fv/Fm), feature data (induction features), and the whole OJIP induction (induction curve) by using a Support Vector Machine (SVM). The classification accuracies were compared with those obtained by the K-Nearest Neighbors (KNN) and the Ensemble model (Ensemble) correspondingly. The results show that the SVM can be used to classify drought stress levels of rice more accurately compared to the KNN and the Ensemble and the classification accuracy (86.7%) for the induction curve as input is higher than the accuracy (43.9%) with Fv/Fm as input and the accuracy (72.7%) with induction features as input. The results imply that the induction curve carries important information on plant physiology. This work provides a method of determining rice drought stress levels based on ChlF.
Collapse
Affiliation(s)
- Q. Xia
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
| | - L.J. Fu
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
| | - H. Tang
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
| | - L. Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 225009 Yangzhou, China
| | - J.L. Tan
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Y. Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and Cultivated Tomato for High Photochemical Efficiency under Water Deficit for Climate Change Resilience. CLIMATE 2021. [DOI: 10.3390/cli9110154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluctuations of the weather conditions, due to global climate change, greatly influence plant growth and development, eventually affecting crop yield and quality, but also plant survival. Since water shortage is one of the key risks for the future of agriculture, exploring the capability of crop species to grow with limited water is therefore fundamental. By using chlorophyll fluorescence analysis, we evaluated the responses of wild tomato accession Solanum pennellii LA0716, Solanum lycopersicum cv. Μ82, the introgression line IL12-4 (from cv. M82 Χ LA0716), and the Greek tomato cultivars cv. Santorini and cv. Zakinthos, to moderate drought stress (MoDS) and severe drought stress (SDS), in order to identify the minimum irrigation level for efficient photosynthetic performance. Agronomic traits (plant height, number of leaves and root/shoot biomass), relative water content (RWC), and lipid peroxidation, were also measured. Under almost 50% deficit irrigation, S. pennellii exhibited an enhanced photosynthetic function by displaying a hormetic response of electron transport rate (ETR), due to an increased fraction of open reaction centers, it is suggested to be activated by the low increase of reactive oxygen species (ROS). A low increase of ROS is regarded to be beneficial by stimulating defense responses and also triggering a more oxidized redox state of quinone A (QA), corresponding in S. pennellii under 50% deficit irrigation, to the lowest stomatal opening, resulting in reduction of water loss. Solanumpennellii was the most tolerant to drought, as it was expected, and could manage to have an adequate photochemical function with almost 30% water regime of well-watered plants. With 50% deficit irrigation, cv. Μ82 and cv. Santorini did not show any difference in photochemical efficiency to control plants and are recommended to be cultivated under deficit irrigation as an effective strategy to enhance agricultural sustainability under a global climate change. We conclude that instead of the previously used Fv/Fm ratio, the redox state of QA, as it can be estimated by the chlorophyll fluorescence parameter 1 - qL, is a better indicator to evaluate photosynthetic efficiency and select drought tolerant cultivars under deficit irrigation.
Collapse
|