1
|
Bréchet LM, Salomόn RL, Machacova K, Stahl C, Burban B, Goret JY, Steppe K, Bonal D, Janssens IA. Insights into the subdaily variations in methane, nitrous oxide and carbon dioxide fluxes from upland tropical tree stems. THE NEW PHYTOLOGIST 2025; 245:2451-2466. [PMID: 39822118 DOI: 10.1111/nph.20401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Recent studies have shown that stem fluxes, although highly variable among trees, can alter the strength of the methane (CH4) sink or nitrous oxide (N2O) source in some forests, but the patterns and magnitudes of these fluxes remain unclear. This study investigated the drivers of subdaily and seasonal variations in stem and soil CH4, N2O and carbon dioxide (CO2) fluxes. CH4, N2O and CO2 fluxes were measured continuously for 19 months in individual stems of two tree species, Eperua falcata (Aubl.) and Lecythis poiteaui (O. Berg), and surrounding soils using an automated chamber system in an upland tropical forest. Subdaily variations in these fluxes were related to environmental and stem physiological (sap flow and stem diameter variations) measurements under contrasting soil water conditions. The results showed that physiological and climatic drivers only partially explained the subdaily flux variations. Stem CH4 and CO2 emissions and N2O uptake varied with soil water content, time of day and between individuals. Stem fluxes decoupled from soil fluxes. Our study contributes to understanding the regulation of stem greenhouse gas fluxes. It suggests that additional variables (e.g. internal gas concentrations, wood-colonising microorganisms, wood density and anatomy) may account for the remaining unexplained variability in stem fluxes, highlighting the need for further studies.
Collapse
Affiliation(s)
- Laëtitia M Bréchet
- INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, 97310, Kourou, France
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Roberto L Salomόn
- FORESCENT Research Group, Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Katerina Machacova
- Department of Ecosystem Trace Gas Exchange, Global Change Research Institute of the Czech Academy of Sciences, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Clément Stahl
- INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Benoît Burban
- INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Jean-Yves Goret
- INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Damien Bonal
- AgroParisTech, INRAE, UMR Silva, Université de Lorraine, F-54000, Nancy, France
| | - Ivan A Janssens
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| |
Collapse
|
2
|
Salomón RL, Helm J, Gessler A, Grams TEE, Hilman B, Muhr J, Steppe K, Wittmann C, Hartmann H. The quandary of sources and sinks of CO2 efflux in tree stems-new insights and future directions. TREE PHYSIOLOGY 2024; 44:tpad157. [PMID: 38214910 DOI: 10.1093/treephys/tpad157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes. In this Insight, we (i) describe processes affecting the quantification of RS, (ii) review common methodological approaches to quantify and model RS and (iii) develop a research agenda to fill the most relevant knowledge gaps that we identified. Dissolution, transport and accumulation of respired CO2 away from its production site, reassimilation of respired CO2 via stem photosynthesis and the enzyme phosphoenolpyruvate carboxylase, axial CO2 diffusion in the gas phase, shifts in the respiratory substrate and non-respiratory oxygen (O2) consumption are the most relevant processes causing divergence between RS and measured stem gas exchange (ECO2 or O2 influx, IO2). Two common methodological approaches to estimate RS, namely the CO2 mass balance approach and the O2 consumption technique, circumvent some of these processes but have yielded inconsistent results regarding the fate of respired CO2. Stem respiration modelling has recently progressed at the organ and tree levels. However, its implementation in large-scale models, commonly operated from a source-driven perspective, is unlikely to reflect adequate mechanisms. Finally, we propose hypotheses and approaches to advance the knowledge of the stem carbon balance, the role of sap pH on RS, the reassimilation of respired CO2, RS upscaling procedures, large-scale RS modelling and shifts in respiratory metabolism during environmental stress.
Collapse
Affiliation(s)
- Roberto L Salomón
- Universidad Politécnica de Madrid (UPM), Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Antonio Novais 10, 28040, Madrid, Spain
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Juliane Helm
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstr. 6, Basel CH-4056, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Rämistrasse 101, 8902 Zurich, Switzerland
| | - Thorsten E E Grams
- Technical University of Munich, Ecophysiology of Plants, Land Surface - Atmosphere Interactions, Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Boaz Hilman
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - Jan Muhr
- Department of Forest Botany and Tree Physiology, Laboratory for Radioisotopes, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Kathy Steppe
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Christiane Wittmann
- Faculty of Biology, Botanical Garden, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Henrik Hartmann
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Institute for Forest Protection, Julius Kühn Institute Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, 06484 Quedlinburg, Germany
| |
Collapse
|
3
|
Variability in Stem Methane Emissions and Wood Methane Production of Tree Different Species in a Cold Temperate Mountain Forest. Ecosystems 2022. [DOI: 10.1007/s10021-022-00795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|