1
|
Zhang D, Ma S, Liu Z, Yang Y, Yang W, Zeng H, Su H, Yang Y, Zhang W, Zhang J, Ku L, Ren Z, Chen Y. ZmABF4-ZmVIL2/ZmFIP37 module enhances drought tolerance in maize seedlings. PLANT, CELL & ENVIRONMENT 2024; 47:3605-3618. [PMID: 38747469 DOI: 10.1111/pce.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 08/16/2024]
Abstract
Drought, as a primary environmental factor, imposes significant constraints on developmental processes and productivity of plants. PHDs were identified as stress-responsive genes in a wide range of eukaryotes. However, the regulatory mechanisms governing PHD genes in maize under abiotic stress conditions are still largely unknown and require further investigation. Here, we identified a mutant, zmvil2, in the EMS mutant library with a C to T mutation in the exon of the Zm00001d053875 (VIN3-like protein 2, ZmVIL2), resulting in premature termination of protein coding. ZmVIL2 belongs to PHD protein family. Compared to WT, zmvil2 mutant exhibited increased sensitivity to drought stress. Consistently, overexpression of ZmVIL2 enhances drought resistance in maize. Y2H, BiFC, and Co-IP experiments revealed that ZmVIL2 directly interacts with ZmFIP37 (FKBP12-interacting protein of 37). zmfip37 knockout mutants also exhibit decreased drought tolerance. Interestingly, we demonstrated that ZmABF4 directly binds to the ZmVIL2 promoter to enhance its activity in yeast one hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assays. Therefore, we uncovered a novel model ZmABF4-ZmVIL2/ZmFIP37 that promotes drought tolerance in maize. Overall, these findings have enriched the knowledge of the functions of PHD genes in maize and provides genetic resources for breeding stress-tolerant maize varieties.
Collapse
Affiliation(s)
- Dongling Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shixiang Ma
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuwei Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjing Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haixia Zeng
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yang Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wanjun Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Yang Y, Tan L, Xu X, Tang Q, Wang J, Xing S, Wang R, Zou T, Wang S, Zhu J, Li S, Liang Y, Deng Q, Li P. Activation and Autoinhibition Mechanisms of NLR Immune Receptor Pi36 in Rice. Int J Mol Sci 2024; 25:7301. [PMID: 39000408 PMCID: PMC11242311 DOI: 10.3390/ijms25137301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are the most important and largest class of immune receptors in plants. The Pi36 gene encodes a canonical CC-NBS-LRR protein that confers resistance to rice blast fungal infections. Here, we show that the CC domain of Pi36 plays a role in cell death induction. Furthermore, self-association is required for the CC domain-mediated cell death, and the self-association ability is correlated with the cell death level. In addition, the NB-ARC domain may suppress the activity of the CC domain through intramolecular interaction. The mutations D440G next to the RNBS-D motif and D503V in the MHD motif autoactivated Pi36, but the mutation K212 in the P-loop motif inhibited this autoactivation, indicating that nucleotide binding of the NB-ARC domain is essential for Pi36 activation. We also found that the LRR domain is required for D503V- and D440G-mediated Pi36 autoactivation. Interestingly, several mutations in the CC domain compromised the CC domain-mediated cell death without affecting the D440G- or D503V-mediated Pi36 autoactivation. The autoactivate Pi36 variants exhibited stronger self-associations than the inactive variants. Taken together, we speculated that the CC domain of Pi36 executes cell death activities, whereas the NB-ARC domain suppressed CC-mediated cell death via intermolecular interaction. The NB-ARC domain releases its suppression of the CC domain and strengthens the self-association of Pi36 to support the CC domain, possibly through nucleotide exchange.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Liu Tan
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Xingzhe Xu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Qiaoyi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Ji Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Shiyue Xing
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Rui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Q.T.); (J.W.); (R.W.); (S.L.); (Y.L.)
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Y.); (L.T.); (X.X.); (S.X.); (S.W.); (J.Z.)
| |
Collapse
|
3
|
Liu Z, Zhang F, Gao S, Zhang L, Fu Q, Cui S. Neonicotinoid insecticides in paddy fields: Dissipation dynamics, migration, and dietary risk. CHEMOSPHERE 2024; 359:142371. [PMID: 38768784 DOI: 10.1016/j.chemosphere.2024.142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 μg/L) > THM (2.74 μg/L) > IMI (0.97 μg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 μg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 μg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, 261061, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shang Gao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
4
|
Li Y, Wang Q, Jia H, Ishikawa K, Kosami KI, Ueba T, Tsujimoto A, Yamanaka M, Yabumoto Y, Miki D, Sasaki E, Fukao Y, Fujiwara M, Kaneko-Kawano T, Tan L, Kojima C, Wing RA, Sebastian A, Nishimura H, Fukada F, Niu Q, Shimizu M, Yoshida K, Terauchi R, Shimamoto K, Kawano Y. An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function. Nat Commun 2024; 15:4610. [PMID: 38816417 PMCID: PMC11139913 DOI: 10.1038/s41467-024-48943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication.
Collapse
Affiliation(s)
- Yuying Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qiong Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Kazuya Ishikawa
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Ken-Ichi Kosami
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Ehime, 791-0112, Japan
| | - Takahiro Ueba
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Atsumi Tsujimoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Miki Yamanaka
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Yasuyuki Yabumoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Eriko Sasaki
- Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Shiga, 525-8577, Japan
| | | | - Takako Kaneko-Kawano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Li Tan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chojiro Kojima
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa, 240-8501, Japan
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Alfino Sebastian
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Hideki Nishimura
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Fumi Fukada
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Qingfeng Niu
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui, 230036, China
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Yoji Kawano
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
5
|
Lee HY, Choi J, Kang M, Lee JH, Kim MS, Choi D. Protein stability governed by α1-2 helices in Pvr4 is essential for localization and cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:510-523. [PMID: 37433739 DOI: 10.1111/tpj.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Plant nucleotide-binding domain leucine-rich-repeat receptor (NLR) confers disease resistance to various pathogens by recognizing effectors derived from the pathogen. Previous studies have shown that overexpression of the CC domain in several NLRs triggers cell death, implying that the CC domain plays an important role as a signaling module. However, how CC domain transduces immune signals remains largely unknown. A Potyvirus-resistant NLR protein, Pvr4, possesses a CC domain (CCPvr4 ) that induces cell death upon transient overexpression in Nicotiana benthamiana. In this study, loss-of-function mutants were generated by error-prone PCR-based random mutagenesis to understand the molecular mechanisms underlying CCPvr4 -mediated cell death. Cell biology and biochemical studies revealed that M16 and Q52 in the α1 and α2 helices, respectively, are crucial for protein stability, and mutation of these residues disrupts localization to the plasma membrane and oligomerization activity. The increase of the protein stability of these mutants by tagging a green fluorescent protein (GFP) variant led to restoration of cell death-inducing activity and plasma membrane localization. Another mutant, I7E in the very N-terminal region, lost cell death-inducing activity by weakening the interaction with plasma membrane H+ -ATPase compared to CCPvr4 , although the protein remained in the plasma membrane. Moreover, most of the mutated residues are on the outer surface of the funnel shape in the predicted pentameric CCPvr4 , implying that the disordered N-terminal region plays a crucial role in association with PMA as well as targeting to the plasma membrane. This work could provide insights into the molecular mechanisms of cell death induced by NLR immune receptors.
Collapse
Affiliation(s)
- Hye-Young Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minji Kang
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung-Shin Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Republic of Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Zhang W, Yuan Q, Wu Y, Zhang J, Nie J. Genome-Wide Identification and Characterization of the CC-NBS-LRR Gene Family in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms23095048. [PMID: 35563438 PMCID: PMC9099878 DOI: 10.3390/ijms23095048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The NBS-LRR (NLR) gene family plays a pivotal role in regulating disease defense response in plants. Cucumber is one of the most important vegetable crops in the world, and various plant diseases, including powdery mildew (PM), cause severe losses in both cucumber productivity and quality annually. To characterize and understand the role of the CC-NBS-LRR(CNL) family of genes in disease defense response in cucumber plants, we performed bioinformatical analysis to characterize these genes systematically. We identified 33 members of the CNL gene family in cucumber plants, and they are distributed on each chromosome with chromosome 4 harboring the largest cluster of five different genes. The corresponding CNL family member varies in the number of amino acids and exons, molecular weight, theoretical isoelectric point (pI) and subcellular localization. Cis-acting element analysis of the CNL genes reveals the presence of multiple phytohormone, abiotic and biotic responsive elements in their promoters, suggesting that these genes might be responsive to plant hormones and stress. Phylogenetic and synteny analysis indicated that the CNL proteins are conserved evolutionarily in different plant species, and they can be divided into four subfamilies based on their conserved domains. MEME analysis and multiple sequence alignment showed that conserved motifs exist in the sequence of CNLs. Further DNA sequence analysis suggests that CsCNL genes might be subject to the regulation of different miRNAs upon PM infection. By mining available RNA-seq data followed by real-time quantitative PCR (qRT-PCR) analysis, we characterized expression patterns of the CNL genes, and found that those genes exhibit a temporospatial expression pattern, and their expression is also responsive to PM infection, ethylene, salicylic acid, and methyl jasmonate treatment in cucumber plants. Finally, the CNL genes targeted by miRNAs were predicted in cucumber plants. Our results in this study provided some basic information for further study of the functions of the CNL gene family in cucumber plants.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Qi Yuan
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Yiduo Wu
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jing Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jingtao Nie
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
- Correspondence:
| |
Collapse
|