1
|
Deng Y, Sun C, Fu X, Guo Y, Zhu Y, Liu C, Xu R, Liu H, Li Q, Tang N, Kuang M, Yang W, Liu X, Chen Z. Genome-wide identification and functional characterization of the LBD transcription factor gene family in Zanthoxylum armatum DC. reveal its potential role in leaf variation. BMC PLANT BIOLOGY 2025; 25:717. [PMID: 40437374 PMCID: PMC12117909 DOI: 10.1186/s12870-025-06727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/15/2025] [Indexed: 06/01/2025]
Abstract
BACKGROUND Leaf morphology plays a crucial role in forecasting the productivity and environmental adaptability of economically important trees. Plants with larger leaves usually have higher photosynthesis efficiency and can accumulate more nutrients, thereby increasing yield. In the natural population of Z. armatum, due to long-term selection, the leaves size and shape show rich diversity in different latitude regions. This diversity is the result of plants' adaptation to different environments. However, to date, no studies have systematically revealed the genetic mechanism of Z. armatum leaf variation. In higher plants, lateral organ boundaries domain (LBD) proteins comprise a unique family of transcription factors that play pivotal roles in the establishment of plant leaf polarity and morphogenesis. However, little is currently known regarding the LBD gene family in Z. armatum. RESULTS In this study, we identified 97 members of the LBD gene family within the genome of Z. armatum, which were unevenly distributed among the 33 chromosomes of this species. Physicochemical analysis revealed that these ZaLBDs are hydrophilic proteins with nuclear subcellular localization, whereas phylogenetic analysis of 234 LBD protein from different species indicated that these can be divided into five subfamilies (Ia, Ib, Ic, Id, and II). Furthermore, and analysis of cis-acting regulatory elements revealed that ZaLBDs may play important roles in responses to abiotic stress, hormone signal transduction, and plant growth and development. Transcriptomic data were used to compare the expression of these genes in leaves with differing morphologies collected from Z. armatum plants originating from sites at three different latitudes within the distribution range of this species. These data revealed differences in the expression of 14 genes among Z. armatum populations with different latitudinal distributions, with difference in the expression of the ZaLBD45 gene being the most pronounced, the expression trend of ZaLBD19 was consistent with the trend of leaf size. Moreover, qRT-PCR analysis verified that the relative expression of these genes was highly consistent with the transcriptomic data. CONCLUSIONS In this study, we comprehensively analyzed the functional characteristics and expression patterns of genes in the LBD family within the heterophyllous plant Z. armatum distributed at different latitudes. By mediating the regulation of leaf morphology, these genes may play important roles in the response to abiotic stress and adaptation to ecological changes. Our findings will not only enhance our understanding of the genetic mechanisms underlying the adaptive variation in Z. armatum but also provide valuable resources for the genetic improvement of this plant.
Collapse
Affiliation(s)
- Yifei Deng
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chong Sun
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation and Utilization, Yangtze University, Jingzhou, 434023, China
| | - Xueqian Fu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yuan Guo
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yongxing Zhu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation and Utilization, Yangtze University, Jingzhou, 434023, China
| | - Chongyu Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ruxin Xu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Han Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Qiang Li
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Mi Kuang
- Chongqing Agricultural Technology Promotion General Station, Yubei, 401120, China
| | - Wenying Yang
- Rongchang District Forestry Science and Technology Extension Station of Chongqing, Rongchang, 402460, China
| | - Xia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology/Collaborative Innovation Center of Special Plant Industry in Chongqing/College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
2
|
Xiong Z, Xiao J, Zhao J, Liu S, Yang D, Xiong D, Cui K, Peng S, Huang J. Estimation of Photosynthetic Induction Is Significantly Affected by Light Environments of Local Leaves and Whole Plants in Oryza Genus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1646. [PMID: 38931077 PMCID: PMC11207834 DOI: 10.3390/plants13121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Photosynthetic induction and stomatal kinetics are acknowledged as pivotal factors in regulating both plant growth and water use efficiency under fluctuating light conditions. However, the considerable variability in methodologies and light regimes used to assess the dynamics of photosynthesis (A) and stomatal conductance (gs) during light induction across studies poses challenges for comparison across species. Moreover, the influence of stomatal morphology on both steady-state and non-steady-state gs remains poorly understood. In this study, we show the strong impact of IRGA Chamber Illumination and Whole Plant Illumination on the photosynthetic induction of two rice species. Our findings reveal that these illuminations significantly enhance photosynthetic induction by modulating both stomatal and biochemical processes. Moreover, we observed that a higher density of smaller stomata plays a critical role in enhancing the stomatal opening and photosynthetic induction to fluctuating light conditions, although it exerts minimal influence on steady-state gs and A under constant light conditions. Therefore, future studies aiming to estimate photosynthetic induction and stomatal kinetics should consider the light environments at both the leaf and whole plant levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.X.); (S.L.); (D.X.); (K.C.); (S.P.)
| |
Collapse
|
3
|
Niu MX, Feng CH, He F, Zhang H, Bao Y, Liu SJ, Liu X, Su Y, Liu C, Wang HL, Yin W, Xia X. The miR6445-NAC029 module regulates drought tolerance by regulating the expression of glutathione S-transferase U23 and reactive oxygen species scavenging in Populus. THE NEW PHYTOLOGIST 2024; 242:2043-2058. [PMID: 38515251 DOI: 10.1111/nph.19703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
MicroRNAs are essential in plant development and stress resistance, but their specific roles in drought stress require further investigation. Here, we have uncovered that a Populus-specific microRNAs (miRNA), miR6445, targeting NAC (NAM, ATAF, and CUC) family genes, is involved in regulating drought tolerance of poplar. The expression level of miR6445 was significantly upregulated under drought stress; concomitantly, seven targeted NAC genes showed significant downregulation. Silencing the expression of miR6445 by short tandem target mimic technology significantly decreased the drought tolerance in poplar. Furthermore, 5' RACE experiments confirmed that miR6445 directly targeted NAC029. The overexpression lines of PtrNAC029 (OE-NAC029) showed increased sensitivity to drought compared with knockout lines (Crispr-NAC029), consistent with the drought-sensitive phenotype observed in miR6445-silenced strains. PtrNAC029 was further verified to directly bind to the promoters of glutathione S-transferase U23 (GSTU23) and inhibit its expression. Both Crispr-NAC029 and PtrGSTU23 overexpressing plants showed higher levels of PtrGSTU23 transcript and GST activity while accumulating less reactive oxygen species (ROS). Moreover, poplars overexpressing GSTU23 demonstrated enhanced drought tolerance. Taken together, our research reveals the crucial role of the miR6445-NAC029-GSTU23 module in enhancing poplar drought tolerance by regulating ROS homeostasis. This finding provides new molecular targets for improving the drought resistance of trees.
Collapse
Affiliation(s)
- Meng-Xue Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Cong-Hua Feng
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Fang He
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Han Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yu Bao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shu-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiao Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanyan Su
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
4
|
Zhou X, Xiang X, Cao D, Zhang L, Hu J. Selective sweep and GWAS provide insights into adaptive variation of Populus cathayana leaves. FORESTRY RESEARCH 2024; 4:e012. [PMID: 39524419 PMCID: PMC11524237 DOI: 10.48130/forres-0024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 11/16/2024]
Abstract
Leaf morphology plays a crucial role in predicting the productivity and environmental adaptability of forest trees, making it essential to understand the genetic mechanisms behind leaf variation. In natural populations of Populus cathayana, leaf morphology exhibits rich intraspecific variation due to long-term selection. However, there have been no studies that systematically reveal the genetic mechanisms of leaf variation in P. cathayana. To fill this gap and enhance our understanding of leaf variation in P. cathayana, we collected nine leaf traits from the P. cathayana natural population, consisting of 416 accessions, and conducted the preliminary classification of leaf types with four categories. Subsequently, we conducted an analysis of selective sweep and genome-wide association studies (GWAS) to uncover the genetic basis of leaf traits variation. Most of the leaf traits displayed significant correlations, with broad-sense trait heritability ranging from 0.38 to 0.74. In total, three selective sweep methods ultimately identified 278 positively selected candidate regions and 493 genes associated with leaf size. Single-trait and multi-trait GWAS methods detected 13 and 59 genes, respectively. By integrating the results of selective sweep and GWAS, we further identified a total of nine overlapping genes. These genes may play a role in the leaf development process and are closely associated with leaf size. In particular, the gene CBSCBSPB3 (Pca07G009100) located on chromosome 7, was associated with the response to light stimulation. This study will deepen our understanding of the genetic mechanism of leaf adaptive variation in P. cathayana and provide valuable gene resources.
Collapse
Affiliation(s)
- Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
5
|
Zhao J, Li A, Xu M, Dai G, Chen J. Genome-wide analysis of the TIFY family in Lycium and the negative regulation of stomatal development by LrJAZ2 gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108285. [PMID: 38145586 DOI: 10.1016/j.plaphy.2023.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Stomata are ports that facilitate gas and water vapor exchange during plant photosynthesis and transpiration. Stomatal development is strictly regulated by endogenous hormone. Jasmonate, an important signal that modulates multiple physiological processes in plants, has been found to negatively regulate stomatal development in Arabidopsis thaliana, yet the molecular mechanisms underlying stomata development signaling remain to be understood. Jasmonate ZIM-domain (JAZ) proteins are the members of TIFY family and the key component of JA signaling pathway. Its function in stomatal development is unclear to data. Here, we screened out 24 TIFY family members against the genome of Lycium, and identified a JAZ member by combination analyses of evolutionary tree, cis-elements in promoter and gene expression patterns. Overexpression of this gene (LrJAZ2) in Lycium ruthenicum and Arabidopsis thaliana indicated LrJAZ2 negatively regulates stomatal development. Microscopic observations revealed that overexpression of LrJAZ2 negatively regulated stomatal development by decreasing stomatal density and index, which may lead to lower leaf transpiration rates. Transcriptome data indicated the overexpression of LrJAZ2 up-regulated the stomatal related genes such as LrERL2, LrPYL4, and down-regulated the LrSPCH. Collectively, our study found that LrJAZ2 is a key gene in stomatal development regulation in L. ruthenicum and provided new insights into the regulation of stomatal development.
Collapse
Affiliation(s)
- Jiqing Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
| | - Aijia Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Meng Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Guoli Dai
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Jinhuan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Yang T, Dong J, Zhao J, Zhang L, Zhou L, Yang W, Ma Y, Wang J, Fu H, Chen J, Li W, Hu H, Jiang X, Liu Z, Liu B, Zhang S. Genome-wide association mapping combined with gene-based haplotype analysis identify a novel gene for shoot length in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:251. [PMID: 37985474 PMCID: PMC10661777 DOI: 10.1007/s00122-023-04497-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
KEY MESSAGE Genome-wide association mapping revealed a novel QTL for shoot length across multiple environments. Its causal gene, LOC_Os01g68500, was identified firstly through gene-based haplotype analysis, gene expression and knockout transgenic verification. Strong seedling vigor is an important breeding target for rice varieties used in direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor characterized by rapid growth of seedling, which enhance seedling emergence. Therefore, mining genes for SL and conducting molecular breeding help to develop varieties for direct seeding. However, few QTLs for SL have been fine mapped or cloned so far. In this study, a genome-wide association study of SL was performed in a diverse rice collection consisting of 391 accessions in two years, using phenotypes generated by different cultivation methods according to the production practice, and a total of twenty-four QTLs for SL were identified. Among them, the novel QTL qSL-1f on chromosome 1 could be stably detected across all three cultivation methods in the whole population and indica subpopulation. Through gene-based haplotype analysis of the annotated genes within the putative region of qSL-1f, and validated by gene expression and knockout transgenic experiments, LOC_Os01g68500 (i.e., Os01g0913100 in RAP-DB) was identified as the causal gene for SL, which has a single-base variation (C-to-A transversion) in its CDS region, resulting in the significant difference in SL of rice. LOC_Os01g68500 encodes a DUF538 (Domain of unknown function) containing protein, and the function of DUF538 protein gene on rice seedling growth is firstly reported in this study. These results provide a new clue for exploring the molecular mechanism regulating SL, and promising gene source for the molecular breeding in rice.
Collapse
Affiliation(s)
- Tifeng Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Longting Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wu Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jian Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hua Fu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Science, Yangjiang, 529500, China
| | - Ziqiang Liu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Liu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Li Y, Wang W, Zhang N, Cheng Y, Hussain S, Wang Y, Tian H, Hussain H, Lin R, Yuan Y, Wang C, Wang T, Wang S. Antagonistic Regulation of ABA Responses by Duplicated Tandemly Repeated DUF538 Protein Genes in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2989. [PMID: 37631202 PMCID: PMC10459309 DOI: 10.3390/plants12162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The plant hormone ABA (abscisic acid) regulates plant responses to abiotic stresses by regulating the expression of ABA response genes. However, the functions of a large portion of ABA response genes have remained unclear. We report in this study the identification of ASDs (ABA-inducible signal peptide-containing DUF538 proteins), a subgroup of DUF538 proteins with a signal peptide, as the regulators of plant responses to ABA in Arabidopsis. ASDs are encoded by four closely related DUF538 genes, with ASD1/ASD2 and ASD3/ASD4 being two pairs of duplicated tandemly repeated genes. The quantitative RT-PCR (qRT-PCR) results showed that the expression levels of ASDs increased significantly in response to ABA as well as NaCl and mannitol treatments, with the exception that the expression level of ASD2 remained largely unchanged in response to NaCl treatment. The results of Arabidopsis protoplast transient transfection assays showed that ASDs were localized on the plasma membrane and in the cytosol and nucleus. When recruited to the promoter of the reporter gene via a fused GD domain, ASDs were able to slightly repress the expression of the co-transfected reporter gene. Seed germination and cotyledon greening assays showed that ABA sensitivity was increased in the transgenic plants that were over-expressing ASD1 or ASD3 but decreased in the transgenic plants that were over-expressing ASD2 or ASD4. On the other hand, ABA sensitivity was increased in the CRISPR/Cas9 gene-edited asd2 single mutants but decreased in the asd3 single mutants. A transcriptome analysis showed that differentially expressed genes in the 35S:ASD2 transgenic plant seedlings were enriched in several different processes, including in plant growth and development, the secondary metabolism, and plant hormone signaling. In summary, our results show that ASDs are ABA response genes and that ASDs are involved in the regulation of plant responses to ABA in Arabidopsis; however, ASD1/ASD3 and ASD2/ASD4 have opposite functions.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| |
Collapse
|