1
|
Zhao M, Guo Z, Zhang M, Zhang J, Chen X, Yang F, Li Z, Li W. Optimization strategies to improve the carbon sink capacity of C 3 plants under the background of dual carbon strategy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109837. [PMID: 40168858 DOI: 10.1016/j.plaphy.2025.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
In the 21st century, mankind is facing serious climate challenges, and the greenhouse effect caused by excessive CO2 emissions is a difficult problem that mankind urgently needs to solve. In this context, the dual-carbon strategy is proposed, that is, it is hoped that by reducing carbon sources and increasing carbon sinks, the purpose of improving the climate can be achieved. Plants themselves have a certain carbon sequestration capacity, and C4 plants have a stronger carbon sequestration capacity than C3. Therefore, it is a good research prospect to improve C3 plants by utilizing the relevant characteristics of C4 plants to enhance the CO2 absorption capacity of C3 plants. Current research is generally focused on genetic engineering, this paper summarizes the enzymes that have some research significance in C3 plant modification, such as, Rubisco, PPDK, PEPC, NADP-MDH, NADP-ME, etc., as well as the related genes that constitute the enzymes, and also outlines a series of recent advances in the modification of photorespiratory branching and non-photochemical quenching (NPQ). It is hoped that this paper will provide certain research directions and ideas for researchers to obtain C3 plants with higher carbon sequestration capacity.
Collapse
Affiliation(s)
- Mengmeng Zhao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China.
| | - Zixuan Guo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Mingxia Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Jingwen Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Xiong Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Fanfan Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Ziting Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Wangrun Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| |
Collapse
|
2
|
Dickinson PJ, Triesch S, Schlüter U, Weber APM, Hibberd JM. A transcription factor module mediating C 2 photosynthesis in the Brassicaceae. EMBO Rep 2025:10.1038/s44319-025-00461-1. [PMID: 40312562 DOI: 10.1038/s44319-025-00461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
C4 photosynthesis has arisen from the ancestral C3 state in over sixty lineages of angiosperms. It is widely accepted that an early step in C4 evolution is associated with the appearance of so-called C2 photosynthesis caused by loss of glycine decarboxylase activity from mesophyll cells followed by activation in the bundle sheath. Although changes in cis to a distal enhancer upstream of the P-subunit of GLYCINE DECARBOXYLASE (GLDP) from C2 Moricandia enable loss of expression from mesophyll cells, the mechanism then allowing GLDP expression in the bundle sheath is not known. Here we identify a MYC-MYB transcription factor module previously associated with the control of glucosinolate biosynthesis as the basis of this foundational event in the evolution of C2 photosynthesis. Specifically, we find that in the C3 state this MYC-MYB module already patterns GLDP expression to bundle sheath cells. As a consequence, when GLDP expression is lost from the mesophyll, the MYC-MYB dependent expression in the bundle sheath is revealed. Evolution of C2 photosynthesis is thus associated with a MYC-MYB based transcriptional network already present in the C3 state. This work identifies a molecular genetic mechanism underlying the bundle sheath accumulation of glycine decarboxylase required for C2 photosynthesis and thus a fundamental step in the evolution of C4 photosynthesis.
Collapse
Affiliation(s)
- Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Sebastian Triesch
- Institute of Biochemistry, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Biochemistry, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Biochemistry, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
3
|
Hoang NV, Walden N, Caracciolo L, Luoni SB, Retta M, Li R, Wolters FC, Woldu T, Becker FFM, Verbaarschot P, Harbinson J, Driever SM, Struik PC, van Amerongen H, de Ridder D, Aarts MGM, Schranz ME. Expanding the Triangle of U: Comparative analysis of the Hirschfeldia incana genome provides insights into chromosomal evolution, phylogenomics and high photosynthesis-related traits. ANNALS OF BOTANY 2024:mcae179. [PMID: 39446469 DOI: 10.1093/aob/mcae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND AIMS The Brassiceae tribe encompasses many economically important crops and exhibits high intraspecific and interspecific phenotypic variation. After a shared whole-genome triplication (WGT) event (Br-α, ~15.9 million years ago), differential lineage diversification and genomic changes contributed to an array of divergence in morphology, biochemistry, and physiology underlying photosynthesis-related traits. Here, the C3 species Hirschfeldia incana is studied as it displays high photosynthetic rates under high-light conditions. Our aim was to elucidate the evolution that gave rise to the genome of H. incana and its high-photosynthesis traits. METHODS We reconstructed a chromosome-level genome assembly for H. incana (Nijmegen, v2.0) using nanopore and chromosome conformation capture (Hi-C) technologies, with 409Mb in size and an N50 of 52Mb (a 10× improvement over the previously published scaffold-level v1.0 assembly). The updated assembly and annotation was subsequently employed to investigate the WGT history of H. incana in a comparative phylogenomic framework from the Brassiceae ancestral genomic blocks and related diploidized crops. KEY RESULTS Hirschfeldia incana (x=7) shares extensive genome collinearity with Raphanus sativus (x=9). These two species share some commonalities with Brassica rapa and B. oleracea (A genome, x=10 and C genome, x=9, respectively) and other similarities with B. nigra (B genome, x=8). Phylogenetic analysis revealed that H. incana and R. sativus form a monophyletic clade in between the Brassica A/C and B genomes. We postulate that H. incana and R. sativus genomes are results of hybridization or introgression of the Brassica A/C and B genome types. Our results might explain the discrepancy observed in published studies regarding phylogenetic placement of H. incana and R. sativus in relation to the "Triangle of U" species. Expression analysis of WGT retained gene copies revealed sub-genome expression divergence, likely due to neo- or sub-functionalization. Finally, we highlighted genes associated with physio-biochemical-anatomical adaptive changes observed in H. incana which likely facilitate its high-photosynthesis traits under high light. CONCLUSIONS The improved H. incana genome assembly, annotation and results presented in this work will be a valuable resource for future research to unravel the genetic basis of its ability to maintain a high photosynthetic efficiency in high-light conditions and thereby improve photosynthesis for enhanced agricultural production.
Collapse
Affiliation(s)
- Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nora Walden
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sofia Bengoa Luoni
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges Retta
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Run Li
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Felicia C Wolters
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tina Woldu
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Julkowska MM. Data insights: Descriptive data papers with high information impact are a new gold mine for readers of plant, cell and environment. PLANT, CELL & ENVIRONMENT 2024; 47:3699-3700. [PMID: 38173307 DOI: 10.1111/pce.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
|
5
|
Triesch S, Denton AK, Bouvier JW, Buchmann JP, Reichel-Deland V, Guerreiro RNFM, Busch N, Schlüter U, Stich B, Kelly S, Weber APM. Transposable elements contribute to the establishment of the glycine shuttle in Brassicaceae species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:270-281. [PMID: 38168881 DOI: 10.1111/plb.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
C3 -C4 intermediate photosynthesis has evolved at least five times convergently in the Brassicaceae, despite this family lacking bona fide C4 species. The establishment of this carbon concentrating mechanism is known to require a complex suite of ultrastructural modifications, as well as changes in spatial expression patterns, which are both thought to be underpinned by a reconfiguration of existing gene-regulatory networks. However, to date, the mechanisms which underpin the reconfiguration of these gene networks are largely unknown. In this study, we used a pan-genomic association approach to identify genomic features that could confer differential gene expression towards the C3 -C4 intermediate state by analysing eight C3 species and seven C3 -C4 species from five independent origins in the Brassicaceae. We found a strong correlation between transposable element (TE) insertions in cis-regulatory regions and C3 -C4 intermediacy. Specifically, our study revealed 113 gene models in which the presence of a TE within a gene correlates with C3 -C4 intermediate photosynthesis. In this set, genes involved in the photorespiratory glycine shuttle are enriched, including the glycine decarboxylase P-protein whose expression domain undergoes a spatial shift during the transition to C3 -C4 photosynthesis. When further interrogating this gene, we discovered independent TE insertions in its upstream region which we conclude to be responsible for causing the spatial shift in GLDP1 gene expression. Our findings hint at a pivotal role of TEs in the evolution of C3 -C4 intermediacy, especially in mediating differential spatial gene expression.
Collapse
Affiliation(s)
- S Triesch
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - A K Denton
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - J W Bouvier
- Department of Biology, University of Oxford, Oxford, UK
| | - J P Buchmann
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Biological Data Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - V Reichel-Deland
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - R N F M Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - N Busch
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - U Schlüter
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - B Stich
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - S Kelly
- Department of Biology, University of Oxford, Oxford, UK
| | - A P M Weber
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
6
|
Schlüter U, Bouvier JW, Guerreiro R, Malisic M, Kontny C, Westhoff P, Stich B, Weber APM. Brassicaceae display variation in efficiency of photorespiratory carbon-recapturing mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6631-6649. [PMID: 37392176 PMCID: PMC10662225 DOI: 10.1093/jxb/erad250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
Carbon-concentrating mechanisms enhance the carboxylase efficiency of Rubisco by providing supra-atmospheric concentrations of CO2 in its surroundings. Beside the C4 photosynthesis pathway, carbon concentration can also be achieved by the photorespiratory glycine shuttle which requires fewer and less complex modifications. Plants displaying CO2 compensation points between 10 ppm and 40 ppm are often considered to utilize such a photorespiratory shuttle and are termed 'C3-C4 intermediates'. In the present study, we perform a physiological, biochemical, and anatomical survey of a large number of Brassicaceae species to better understand the C3-C4 intermediate phenotype, including its basic components and its plasticity. Our phylogenetic analysis suggested that C3-C4 metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathway showed considerable variation. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C3-C4-classified taxa, indicating a crucial role for anatomical features in CO2-concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual species, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of phosphoenolpyruvate carboxylase activities suggested that C4-like shuttles have not evolved in the investigated Brassicaceae. Convergent evolution of the photorespiratory shuttle indicates that it represents a distinct photosynthesis type that is beneficial in some environments.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jacques W Bouvier
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Ricardo Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Milena Malisic
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Carina Kontny
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Walsh CA. Bringing home the carbon: photorespiratory CO2 recovery shows diverse efficiency in Brassicaceae. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6399-6404. [PMID: 37988174 PMCID: PMC10662227 DOI: 10.1093/jxb/erad371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023]
Abstract
This article comments on:Schlüter U, Bouvier JW, Guerreiro R, Malisic M, Kontny C, Westhoff P, Stich B, Weber APM. 2023. Brassicaceae display variation in efficiency of photorespiratory carbon-recapturing mechanisms. Journal of Experimental Botany 74, 6631–6649.
Collapse
Affiliation(s)
- Catherine A Walsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|