1
|
Li D, Yuan G, Sun X. Unravelling the complex relationship between Suillus bovinus and Gomphidius roseus through investigation of their sporocarps in Pinus massoniana forests. BMC Microbiol 2025; 25:170. [PMID: 40133810 PMCID: PMC11938738 DOI: 10.1186/s12866-025-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The co-occurrence of sporocarps has revealed many intimate associations between different ectomycorrhizal (ECM) fungi species. The co-occurrence of sporocarps of Suillus bovinus and Gomphidius roseus, two edible ECM fungi, is well recognized; however, the interactions between them remain largely unknown. This study investigated the relationship between these two fungi occurring in Pinus massoniana forests through phenological, microbiome, and metabolome analyses. RESULTS Gomphidius roseus sporocarps were always found alongside sporocarps of S. bovinus, but not vice versa. The ECM associated with S. bovinus sporocarps exhibited a long-distance exploration type, whereas the ECM associated with G. roseus sporocarps formed a contact exploration type. Both S. bovinus and G. roseus sporocarps and ECM contained the mycelia of both fungi. In contrast, different fungal sporocarps and ECM were dominated by distinct bacterial species. Suillus bovinus sporocarps were recorded in all ages investigated, ranging from 1 to 5 years old to over 30 years old. In contrast, G. roseus sporocarps were mainly found in forests older than 10 years. Previous studies suggested that G. roseus parasitizes S. bovinus; however, the occurrence of G. roseus sporocarps did not significantly affect S. bovinus sporocarp production or P. massoniana growth, challenging this assumption. Despite their intimate interactions, the metabolic profiles of S. bovinus sporocarps more closely resembled those of S. luteus, not G. roseus. CONCLUSION Overall, our analyses showed both similarities and dissimilarities in phenology, microbiome, and metabolome features between the two fungi, and the genesis of G. roseus sporocarps is highly dependent on S. bovinus. These results further indicate that while the formation of ECM between G. roseus and the host may rely on ECM formed by S. bovinus and the same host, it is not parasitic.
Collapse
Affiliation(s)
- Deng Li
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, P.R. China
- College of Forestry, Guizhou University, Guiyang, 550025, P.R. China
| | - Guiyun Yuan
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, P.R. China
- College of Forestry, Guizhou University, Guiyang, 550025, P.R. China
| | - Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, P.R. China.
- College of Forestry, Guizhou University, Guiyang, 550025, P.R. China.
| |
Collapse
|
2
|
Zhang K, Chen X, Shi X, Yang Z, Yang L, Liu D, Yu F. Endophytic Bacterial Community, Core Taxa, and Functional Variations Within the Fruiting Bodies of Laccaria. Microorganisms 2024; 12:2296. [PMID: 39597685 PMCID: PMC11596330 DOI: 10.3390/microorganisms12112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Macrofungi do not exist in isolation but establish symbiotic relationships with microorganisms, particularly bacteria, within their fruiting bodies. Herein, we examined the fruiting bodies' bacteriome of seven species of the genus Laccaria collected from four locations in Yunnan, China. By analyzing bacterial diversity, community structure, and function through 16S rRNA sequencing, we observed the following: (1) In total, 4,840,291 high-quality bacterial sequences obtained from the fruiting bodies were grouped into 16,577 amplicon sequence variants (ASVs), and all samples comprised 23 shared bacterial ASVs. (2) The Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex was found to be the most abundant and presumably coexisting bacterium. (3) A network analysis revealed that endophytic bacteria formed functional groups, which were dominated by the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Novosphingobium, and Variovorax. (4) The diversity, community structure, and dominance of ecological functions (chemoheterotrophy and nitrogen cycling) among endophytic bacteria were significantly shaped by geographic location, habitat, and fungal genotype, rather than fruiting body type. (5) A large number of the endophytic bacteria within Laccaria are bacteria that promote plant growth; however, some pathogenic bacteria that pose a threat to human health might also be present. This research advances our understanding of the microbial ecology of Laccaria and the factors shaping its endophytic bacterial communities.
Collapse
Affiliation(s)
- Kaixuan Zhang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Zhenyan Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Lian Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| |
Collapse
|
3
|
Yan Y, Huang Z, Yan K, Liu Q. Effects of vertical forest stratification on precipitation material redistribution and ecosystem health of Pinus massoniana in the Three Gorges Reservoir area of China. Sci Rep 2024; 14:27596. [PMID: 39528576 PMCID: PMC11555285 DOI: 10.1038/s41598-024-79097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Vertical stratification of forest plays important roles in the local material balance and in maintaining forest health by distributing and redistributing precipitation materials through adsorption, fixation, and release. Differences in runoff nutrient concentrations among vertical layers are closely related to vertical stratification (factors such as the trunk, canopy, forest litter, and soil physical and chemical properties). Long-term forest observations revealed significant spatial differences in Pinus massoniana (Pinus massoniana Lamb.) forests in the Three Gorges Reservoir area. Pinus massoniana forests on downslopes were characterized by a dense canopy, green needles, and rich forest vegetation, while those on upslopes were characterized by low vegetation cover, dead trees, and decreases in the tree height, diameter at breast height, and volume per plant with increasing slope. By analyzing the soil at different sites, we found that the pH of the forest land soil differed significantly among different slope positions. Soil on upper slopes was significantly more acidic than soil on lower slopes, indicating that acidic substances were intercepted by filtration through the broad litter layer and the soil surface layer. This filtration process resulted in a normal rhizosphere environment suitable for the absorption of nutrients by vegetation on the lower slopes. In this way, downhill sites provided a good microenvironment for the growth of Pinus massoniana and other vegetation. Our results show that direct contact between needles and acid rain was not the main cause of root death. Instead, the redistribution of rainfall substances by forest spatial stratification caused changes in the soil microenvironment, which inhibited the absorption of nutrients by the roots of Pinus massoniana and the growth of understory plants in Pinus massoniana forests on upper slopes. These findings emphasize that increasing land cover with forests with vertical structural stratification plays an important role in woodland material redistribution and forest conservation.
Collapse
Affiliation(s)
- Yangyang Yan
- Institute of Mountain Hazarda and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
- The Research Station of Soil and water conservation and environmental in Three Gorges Reservoir Region, Wanzhou, 404020, China
| | - Zhihua Huang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Kun Yan
- Institute of Mountain Hazarda and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
- The Research Station of Soil and water conservation and environmental in Three Gorges Reservoir Region, Wanzhou, 404020, China
| | - Qin Liu
- Institute of Mountain Hazarda and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
- The Research Station of Soil and water conservation and environmental in Three Gorges Reservoir Region, Wanzhou, 404020, China.
| |
Collapse
|
4
|
Jian Z, Zeng L, Lei L, Liu C, Shen Y, Zhang J, Xiao W, Li MH. Effects of thinning and understory removal on soil phosphorus fractions in subtropical pine plantations. FRONTIERS IN PLANT SCIENCE 2024; 15:1416852. [PMID: 38984152 PMCID: PMC11231387 DOI: 10.3389/fpls.2024.1416852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Forest management changes the physical environments and nutrient dynamics and then regulates the forest productivity. Soil phosphorus (P) availability is critical for productivity in tropical and subtropical forests. However, it was still poorly understood how soil P content and fraction respond to various forest management practices in these regions. Here, we measured the soil total P, available P, and Hedley's P fractions, including inorganic and organic P (Pi and Po), in subtropical pine plantations treated with understory removal (UR), non-dominant species thinning (NDST) and dominant species thinning (DST) after nine years. Compared to plantations without management (CK), treatments such as UR, NDST, and DST decreased soil total P at 0-10 cm and soil available P at 0-10 cm and 10-20 cm. Increases in resin-Pi, NaOH-Pi, and C.HCl-Pi resulted in a higher total Pi in 0-10 cm (p < 0.05) in treated plots (UR, NDST, and DST) than in CK plots. UR, NDST, and DST treatments increased NaHCO3-Po and NaOH-Po (p < 0.05) but decreased C.HCl-Po at a depth of 0-10 cm. Regardless of management treatments, soil total P, available P, and P fractions in 0-10 cm showed higher contents than those in 10-20 cm. There were positive relationships between total P and total Po (p < 0.01) and between available P and total Pi. There were also positive relationships between total P, available P, NaHCO3-Pi, and NaOH-Pi (p < 0.05). In conclusion, forest management such as UR, NDST, and DST decreased soil total P and available P, and transforming soil P fractions to available P will meet the P demand following management in the pine plantations of subtropical China.
Collapse
Affiliation(s)
- Zunji Jian
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Lixiong Zeng
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lei Lei
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changfu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yafei Shen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiajia Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- School of Life Science, Hebei University, Baoding, China
| |
Collapse
|
5
|
Pang F, Li Q, Solanki MK, Wang Z, Xing YX, Dong DF. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front Microbiol 2024; 15:1383813. [PMID: 38601943 PMCID: PMC11005474 DOI: 10.3389/fmicb.2024.1383813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qing Li
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|