1
|
Soliman TN, Keifenheim D, Parker PJ, Clarke DJ. Cell cycle responses to Topoisomerase II inhibition: Molecular mechanisms and clinical implications. J Cell Biol 2023; 222:e202209125. [PMID: 37955972 PMCID: PMC10641588 DOI: 10.1083/jcb.202209125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
DNA Topoisomerase IIA (Topo IIA) is an enzyme that alters the topological state of DNA and is essential for the separation of replicated sister chromatids and the integrity of cell division. Topo IIA dysfunction activates cell cycle checkpoints, resulting in arrest in either the G2-phase or metaphase of mitosis, ultimately triggering the abscission checkpoint if non-disjunction persists. These events, which directly or indirectly monitor the activity of Topo IIA, have become of major interest as many cancers have deficiencies in Topoisomerase checkpoints, leading to genome instability. Recent studies into how cells sense Topo IIA dysfunction and respond by regulating cell cycle progression demonstrate that the Topo IIA G2 checkpoint is distinct from the G2-DNA damage checkpoint. Likewise, in mitosis, the metaphase Topo IIA checkpoint is separate from the spindle assembly checkpoint. Here, we integrate mechanistic knowledge of Topo IIA checkpoints with the current understanding of how cells regulate progression through the cell cycle to accomplish faithful genome transmission and discuss the opportunities this offers for therapy.
Collapse
Affiliation(s)
- Tanya N. Soliman
- Barts Cancer Institute, Queen Mary University London, London, UK
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Shteinman ER, Wilmott JS, da Silva IP, Long GV, Scolyer RA, Vergara IA. Causes, consequences and clinical significance of aneuploidy across melanoma subtypes. Front Oncol 2022; 12:988691. [PMID: 36276131 PMCID: PMC9582607 DOI: 10.3389/fonc.2022.988691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aneuploidy, the state of the cell in which the number of whole chromosomes or chromosome arms becomes imbalanced, has been recognized as playing a pivotal role in tumor evolution for over 100 years. In melanoma, the extent of aneuploidy, as well as the chromosomal regions that are affected differ across subtypes, indicative of distinct drivers of disease. Multiple studies have suggested a role for aneuploidy in diagnosis and prognosis of melanomas, as well as in the context of immunotherapy response. A number of key constituents of the cell cycle have been implicated in aneuploidy acquisition in melanoma, including several driver mutations. Here, we review the state of the art on aneuploidy in different melanoma subtypes, discuss the potential drivers, mechanisms underlying aneuploidy acquisition as well as its value in patient diagnosis, prognosis and response to immunotherapy treatment.
Collapse
Affiliation(s)
- Eva R. Shteinman
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Cancer & Hematology Centre, Blacktown Hospital, Blacktown, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales (NSW) Health Pathology, Sydney, NSW, Australia
| | - Ismael A. Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Ismael A. Vergara,
| |
Collapse
|
3
|
Deiss K, Lockwood N, Howell M, Segeren HA, Saunders RE, Chakravarty P, Soliman TN, Martini S, Rocha N, Semple R, Zalmas LP, Parker PJ. A genome-wide RNAi screen identifies the SMC5/6 complex as a non-redundant regulator of a Topo2a-dependent G2 arrest. Nucleic Acids Res 2019; 47:2906-2921. [PMID: 30590722 PMCID: PMC6451093 DOI: 10.1093/nar/gky1295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
The Topo2a-dependent arrest is associated with faithful segregation of sister chromatids and has been identified as dysfunctional in numerous tumour cell lines. This genome-protecting pathway is poorly understood and its characterization is of significant interest, potentially offering interventional opportunities in relation to synthetic lethal behaviours in arrest-defective tumours. Using the catalytic Topo2a inhibitor ICRF193, we have performed a genome-wide siRNA screen in arrest-competent, non-transformed cells, to identify genes essential for this arrest mechanism. In addition, we have counter-screened several DNA-damaging agents and demonstrate that the Topo2a-dependent arrest is genetically distinct from DNA damage checkpoints. We identify the components of the SMC5/6 complex, including the activity of the E3 SUMO ligase NSE2, as non-redundant players that control the timing of the Topo2a-dependent arrest in G2. We have independently verified the NSE2 requirement in fibroblasts from patients with germline mutations that cause severely reduced levels of NSE2. Through imaging Topo2a-dependent G2 arrested cells, an increased interaction between Topo2a and NSE2 is observed at PML bodies, which are known SUMOylation hotspots. We demonstrate that Topo2a is SUMOylated in an ICRF193-dependent manner by NSE2 at a novel non-canonical site (K1520) and that K1520 sumoylation is required for chromosome segregation but not the G2 arrest.
Collapse
Affiliation(s)
- Katharina Deiss
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hendrika Alida Segeren
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca E Saunders
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tanya N Soliman
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Silvia Martini
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nuno Rocha
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Robert Semple
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | | | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
4
|
Stevenson AJ, Ager EI, Proctor MA, Škalamera D, Heaton A, Brown D, Gabrielli BG. Mechanism of action of the third generation benzopyrans and evaluation of their broad anti-cancer activity in vitro and in vivo. Sci Rep 2018; 8:5144. [PMID: 29572477 PMCID: PMC5865165 DOI: 10.1038/s41598-018-22882-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022] Open
Abstract
Successive rounds of chemical modification in three generations of benzopyran molecules have shown to select for different mechanisms of actions and progressive increases in anti-cancer activity. In this study, we investigated the mechanism of action of the third-generation benzopyran compounds, TRX-E-002-1 and TRX-E-009-1. High-content screening of a panel of 240 cancer cell lines treated with TRX-E-009-1 demonstrated it has broad anti-cancer potential. Within this screen, melanoma cell lines showed a range of sensitivities and subsequently a second independent panel of 21 melanoma 3D spheroid lines were assessed for their responses to both TRX-E-002-1 and TRX-E-009-1 compounds. Time-lapse microscopy illustrated both of these compounds caused mitotic delays in treated cells, resulting in either mitotic slippage or apoptosis. This finding along with immunostaining, in vitro polymerization assays, and animal experiments in both athymic and immunocompetent mice, demonstrates that these third-generation benzopyran compounds are potent tubulin polymerization inhibitors in vitro and in vivo, and this is the molecular basis of their anti-cancer activity in melanoma. These findings indicate these BP compounds may offer a novel anti-microtubule strategy for cancer intervention and provides the basis for further investigation into biomarkers of clinical sensitivity.
Collapse
Affiliation(s)
- Alexander J Stevenson
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | | | - Martina A Proctor
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Dubravka Škalamera
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Andrew Heaton
- Novogen Ltd., Hornsby, New South Wales, Australia.,School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - David Brown
- Novogen Ltd., Hornsby, New South Wales, Australia.,School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Brian G Gabrielli
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Oo ZY, Stevenson AJ, Proctor M, Daignault SM, Walpole S, Lanagan C, Chen J, Škalamera D, Spoerri L, Ainger SA, Sturm RA, Haass NK, Gabrielli B. Endogenous Replication Stress Marks Melanomas Sensitive to CHEK1 Inhibitors In Vivo. Clin Cancer Res 2018. [PMID: 29535131 DOI: 10.1158/1078-0432.ccr-17-2701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Checkpoint kinase 1 inhibitors (CHEK1i) have single-agent activity in vitro and in vivo Here, we have investigated the molecular basis of this activity.Experimental Design: We have assessed a panel of melanoma cell lines for their sensitivity to the CHEK1i GNE-323 and GDC-0575 in vitro and in vivo The effects of these compounds on responses to DNA replication stress were analyzed in the hypersensitive cell lines.Results: A subset of melanoma cell lines is hypersensitive to CHEK1i-induced cell death in vitro, and the drug effectively inhibits tumor growth in vivo In the hypersensitive cell lines, GNE-323 triggers cell death without cells entering mitosis. CHEK1i treatment triggers strong RPA2 hyperphosphorylation and increased DNA damage in only hypersensitive cells. The increased replication stress was associated with a defective S-phase cell-cycle checkpoint. The number and intensity of pRPA2 Ser4/8 foci in untreated tumors appeared to be a marker of elevated replication stress correlated with sensitivity to CHEK1i.Conclusions: CHEK1i have single-agent activity in a subset of melanomas with elevated endogenous replication stress. CHEK1i treatment strongly increased this replication stress and DNA damage, and this correlated with increased cell death. The level of endogenous replication is marked by the pRPA2Ser4/8 foci in the untreated tumors, and may be a useful marker of replication stress in vivoClin Cancer Res; 24(12); 2901-12. ©2018 AACR.
Collapse
Affiliation(s)
- Zay Yar Oo
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Alexander J Stevenson
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Sheena M Daignault
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Sebastian Walpole
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Catherine Lanagan
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James Chen
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Dubravka Škalamera
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Stephen A Ainger
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia. .,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| |
Collapse
|
6
|
Haass NK, Gabrielli B. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities. Exp Dermatol 2017; 26:649-655. [PMID: 28109167 DOI: 10.1111/exd.13303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches.
Collapse
Affiliation(s)
- Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia.,The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - Brian Gabrielli
- Mater Medical Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
7
|
Bower JJ, Vance LD, Psioda M, Smith-Roe SL, Simpson DA, Ibrahim JG, Hoadley KA, Perou CM, Kaufmann WK. Patterns of cell cycle checkpoint deregulation associated with intrinsic molecular subtypes of human breast cancer cells. NPJ Breast Cancer 2017; 3:9. [PMID: 28649649 PMCID: PMC5445620 DOI: 10.1038/s41523-017-0009-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of breast cancer, contributes to tumor heterogeneity, and influences chemotherapy resistance. Although Gap 2 and mitotic checkpoints are thought to prevent genomic instability, the role of these checkpoints in breast cancer is poorly understood. Here, we assess the Gap 2 and mitotic checkpoint functions of 24 breast cancer and immortalized mammary epithelial cell lines representing four of the six intrinsic molecular subtypes of breast cancer. We found that patterns of cell cycle checkpoint deregulation were associated with the intrinsic molecular subtype of breast cancer cell lines. Specifically, the luminal B and basal-like cell lines harbored two molecularly distinct Gap 2/mitosis checkpoint defects (impairment of the decatenation Gap 2 checkpoint and the spindle assembly checkpoint, respectively). All subtypes of breast cancer cell lines examined displayed aberrant DNA synthesis/Gap 2/mitosis progression and the basal-like and claudin-low cell lines exhibited increased percentages of chromatid cohesion defects. Furthermore, a decatenation Gap 2 checkpoint gene expression signature identified in the cell line panel correlated with clinical outcomes in breast cancer patients, suggesting that breast tumors may also harbor defects in decatenation Gap 2 checkpoint function. Taken together, these data imply that pharmacological targeting of signaling pathways driving these phenotypes may lead to the development of novel personalized treatment strategies for the latter two subtypes which currently lack targeted therapeutic options because of their triple negative breast cancer status.
Collapse
Affiliation(s)
- Jacquelyn J. Bower
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Leah D. Vance
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Matthew Psioda
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Stephanie L. Smith-Roe
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Dennis A. Simpson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joseph G. Ibrahim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Charles M. Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
8
|
Shannan B, Chen Q, Watters A, Perego M, Krepler C, Thombre R, Li L, Rajan G, Peterson S, Gimotty PA, Wilson M, Nathanson KL, Gangadhar TC, Schuchter LM, Weeraratna AT, Herlyn M, Vultur A. Enhancing the evaluation of PI3K inhibitors through 3D melanoma models. Pigment Cell Melanoma Res 2016; 29:317-28. [PMID: 26850518 DOI: 10.1111/pcmr.12465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/03/2016] [Indexed: 12/24/2022]
Abstract
Targeted therapies for mutant BRAF metastatic melanoma are effective but not curative due to acquisition of resistance. PI3K signaling is a common mediator of therapy resistance in melanoma; thus, the need for effective PI3K inhibitors is critical. However, testing PI3K inhibitors in adherent cultures is not always reflective of their potential in vivo. To emphasize this, we compared PI3K inhibitors of different specificity in two- and three-dimensional (2D, 3D) melanoma models and show that drug response predictions gain from evaluation using 3D models. Our results in 3D demonstrate the anti-invasive potential of PI3K inhibitors and that drugs such as PX-866 have beneficial activity in physiological models alone and when combined with BRAF inhibition. These assays finally help highlight pathway effectors that could be involved in drug response in different environments (e.g. p4E-BP1). Our findings show the advantages of 3D melanoma models to enhance our understanding of PI3K inhibitors.
Collapse
Affiliation(s)
- Batool Shannan
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.,Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Quan Chen
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrea Watters
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Michela Perego
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rakhee Thombre
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ling Li
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Geena Rajan
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Phyllis A Gimotty
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Melissa Wilson
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tara C Gangadhar
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Adina Vultur
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
9
|
Targeting the Checkpoint to Kill Cancer Cells. Biomolecules 2015; 5:1912-37. [PMID: 26295265 PMCID: PMC4598780 DOI: 10.3390/biom5031912] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells.
Collapse
|
10
|
Jain CK, Roychoudhury S, Majumder HK. Selective killing of G2 decatenation checkpoint defective colon cancer cells by catalytic topoisomerase II inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1195-204. [PMID: 25746763 DOI: 10.1016/j.bbamcr.2015.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Abstract
Cancer cells with defective DNA decatenation checkpoint can be selectively targeted by the catalytic inhibitors of DNA topoisomerase IIα (topo IIα) enzyme. Upon treatment with catalytic topo IIα inhibitors, cells with defective decatenation checkpoint fail to arrest their cell cycle in G2 phase and enter into M phase with catenated and under-condensed chromosomes resulting into impaired mitosis and eventually cell death. In the present work we analyzed decatenation checkpoint in five different colon cancer cell lines (HCT116, HT-29, Caco2, COLO 205 and SW480) and in one non-cancerous cell line (HEK293T). Four out of the five colon cancer cell lines i.e. HCT116, HT-29, Caco2, and COLO 205 were found to be compromised for the decatenation checkpoint function at different extents, whereas SW480 and HEK293T cell lines were found to be proficient for the checkpoint function. Upon treatment with ICRF193, decatenation checkpoint defective cell lines failed to arrest the cell cycle in G2 phase and entered into M phase without proper chromosomal decatenation, resulting into the formation of tangled mass of catenated and under-condensed chromosomes. Such cells underwent mitotic catastrophe and rapid apoptosis like cell death and showed higher sensitivity for ICRF193. Our study suggests that catalytic inhibitors of topoisomerase IIα are promising therapeutic agents for the treatment of colon cancers with defective DNA decatenation checkpoint.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|