1
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Li H, Wang G, Zhao G, Liu H, Liu L, Cao Y, Li C. TGF-β1 maintains the developmental potential of embryonic submandibular gland epithelia separated with mesenchyme. Heliyon 2024; 10:e33506. [PMID: 39040362 PMCID: PMC11261778 DOI: 10.1016/j.heliyon.2024.e33506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Objective The objective of this study was to investigate the impact of transforming growth factor β1 (TGF-β1) on epithelial development using an ex vivo model of submandibular gland (SMG) epithelial-mesenchymal separation. Materials and methods The ex vivo model was established by separating E13 mouse SMG epithelia and mesenchyme, culturing them independently for 24 h, recombining them, and observing branching morphogenesis. Microarray analysis was performed to evaluate the transcriptome of epithelia treated with and without 1 ng/ml TGF-β1. Differential gene expression, pathway enrichment, and protein-protein interaction networks were analyzed. Quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence were employed to validate the mRNA and protein levels. Results Recombined SMGs using separated epithelia and mesenchyme that were cultured for 24 h showed a significant inhibition of epithelial development compared to SMGs recombined immediately after separation. The level of TGF-β1 decreased in the SMG epithelia after epithelia-mesenchyme separation. Epithelia that were separated from mesenchyme for 24 h and pretreated with 1 ng/ml TGF-β1 continued to develop after recombination with mesenchyme, while epithelia without 1 ng/ml TGF-β1 treatment did not. Microarray analysis suggested pathway enrichment related to epithelial development and an upregulation of Sox2 in the 1 ng/ml TGF-β1-treated epithelia. Further experiments validated the phosphorylation of SMAD2 and SMAD3, upregulation of SOX2 and genes associated with epithelial development, including Prol1, Dcpp1, Bhlha15, Smgc, and Bpifa2. Additionally, 1 ng/ml TGF-β1 inhibited epithelial apoptosis by improving the BCL2/BAX ratio and reducing cleaved caspase 3. Conclusions The addition of 1 ng/ml TGF-β1 maintained the developmental potential of embryonic SMG epithelia separated from mesenchyme for 24 h. This suggests that 1 ng/ml TGF-β1 may partially compensate for the role of mesenchyme during the separation phase, although its compensation is limited in extent.
Collapse
Affiliation(s)
- Honglin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guanru Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guile Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Huabing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Tolue Ghasaban F, Maharati A, Zangouei AS, Zangooie A, Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers. Cancer Cell Int 2023; 23:170. [PMID: 37587481 PMCID: PMC10428558 DOI: 10.1186/s12935-023-03010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Although, there is a high rate of good prognosis in early stage head and neck tumors, about half of these tumors are detected in advanced stages with poor prognosis. A combination of chemotherapy, radiotherapy, and surgery is the treatment option in head and neck cancer (HNC) patients. Although, cisplatin (CDDP) as the first-line drug has a significant role in the treatment of HNC patients, CDDP resistance can be observed in a large number of these patients. Therefore, identification of the molecular mechanisms involved in CDDP resistance can help to reduce the side effects and also provides a better therapeutic management. MicroRNAs (miRNAs) as the post-transcriptional regulators play an important role in drug resistance. Therefore, in the present review we investigated the role of miRNAs in CDDP response of head and neck tumors. It has been reported that the miRNAs exerted their roles in CDDP response by regulation of signaling pathways such as WNT, NOTCH, PI3K/AKT, TGF-β, and NF-kB as well as apoptosis, autophagy, and EMT process. The present review paves the way to suggest a non-invasive miRNA based panel marker for the prediction of CDDP response among HNC patients. Therefore, such diagnostic miRNA based panel marker reduces the CDDP side effects and improves the clinical outcomes of these patients following an efficient therapeutic management.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Ding LN, Yu YY, Ma CJ, Lei CJ, Zhang HB. SOX2-associated signaling pathways regulate biological phenotypes of cancers. Biomed Pharmacother 2023; 160:114336. [PMID: 36738502 DOI: 10.1016/j.biopha.2023.114336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
SOX2 is a transcription factor involved in multiple stages of embryonic development. In related reports, SOX2 was found to be abnormally expressed in tumor tissues and correlated with clinical features such as TNM staging, tumor grade, and prognosis in patients with various cancer types. In most cancer types, SOX2 is a tumor-promoting factor that regulates tumor progression and metastasis primarily by maintaining the stemness of cancer cells. In addition, SOX2 also regulates the proliferation, apoptosis, invasion, migration, ferroptosis and drug resistance of cancer cells. However, SOX2 acts as a tumor suppressor in some cases in certain cancer types, such as gastric and lung cancer. These key regulatory functions of SOX2 involve complex regulatory networks, including protein-protein and protein-nucleic acid interactions through signaling pathways and noncoding RNA interactions, modulating SOX2 expression may be a potential therapeutic strategy for clinical cancer patients. Therefore, we sorted out the phenotypes related to SOX2 in cancer, hoping to provide a basis for further clinical translation.
Collapse
Affiliation(s)
- L N Ding
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Y Y Yu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Lei
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - H B Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhao J, Li L, Wang Z, Li L, He M, Han S, Dong Y, Liu X, Zhao W, Ke Y, Wang C. Luteolin attenuates cancer cell stemness in PTX-resistant oesophageal cancer cells through mediating SOX2 protein stability. Pharmacol Res 2021; 174:105939. [PMID: 34655772 DOI: 10.1016/j.phrs.2021.105939] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Cancer drug resistance is a formidable obstacle that enhances cancer stem-like cell properties, tumour metastasis and relapse. Luteolin (Lut) is a natural flavonoid with strong antitumor effects. However, the underlying mechanism(s) by which Lut protects against paclitaxel-resistant (PTX-resistant) cancer cell remains unknown. Herein, we found that Lut significantly attenuated the stem-like properties of PTX-resistant cancer cells by downregulating the expression of SOX2 protein. Additionally, further study showed that Lut could inhibit the PI3K/AKT pathway to decrease the phosphorylation level of AKT(S473) and UBR5 expression, which is an ubiquitin E3 ligase that promotes SOX2 degradation. In addition, Lut also inhibited PTX-resistant cancer cell migration and invasion by blocking epithelial-mesenchymal transition (EMT). Importantly, Lut inhibited the tumorigenic ability of oesophageal PTX-resistant cancer cells and showed no obvious toxicity in vivo. Thus, Lut has potential as a promising agent for drug-resistant oesophageal cancer therapy.
Collapse
Affiliation(s)
- Jinzhu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Leilei Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Zhijia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Linlin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Mingjing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Shuhua Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yalong Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaojie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Cong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.
| |
Collapse
|
6
|
Huang C, Radi RH, Arbiser JL. Mitochondrial Metabolism in Melanoma. Cells 2021; 10:cells10113197. [PMID: 34831420 PMCID: PMC8618235 DOI: 10.3390/cells10113197] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma and its associated alterations in cellular pathways have been growing areas of interest in research, especially as specific biological pathways are being elucidated. Some of these alterations include changes in the mitochondrial metabolism in melanoma. Many mitochondrial metabolic changes lead to differences in the survivability of cancer cells and confer resistance to targeted therapies. While extensive work has gone into characterizing mechanisms of resistance, the role of mitochondrial adaptation as a mode of resistance is not completely understood. In this review, we wish to explore mitochondrial metabolism in melanoma and how it impacts modes of resistance. There are several genes that play a major role in melanoma mitochondrial metabolism which require a full understanding to optimally target melanoma. These include BRAF, CRAF, SOX2, MCL1, TRAP1, RHOA, SRF, SIRT3, PTEN, and AKT1. We will be discussing the role of these genes in melanoma in greater detail. An enhanced understanding of mitochondrial metabolism and these modes of resistance may result in novel combinatorial and sequential therapies that may lead to greater therapeutic benefit.
Collapse
Affiliation(s)
- Christina Huang
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Rakan H. Radi
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Jack L. Arbiser
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-(404)-727-5063; Fax: +1-(404)-727-0923
| |
Collapse
|
7
|
Namboori SC, Thomas P, Ames R, Hawkins S, Garrett LO, Willis CRG, Rosa A, Stanton LW, Bhinge A. Single-cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS iPSC-derived motor neurons. Stem Cell Reports 2021; 16:3020-3035. [PMID: 34767750 PMCID: PMC8693652 DOI: 10.1016/j.stemcr.2021.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by the loss of motor neurons. We utilized single-cell transcriptomics to uncover dysfunctional pathways in degenerating motor neurons differentiated from SOD1 E100G ALS patient-derived induced pluripotent stem cells (iPSCs) and respective isogenic controls. Differential gene expression and network analysis identified activation of developmental pathways and core transcriptional factors driving the ALS motor neuron gene dysregulation. Specifically, we identified activation of SMAD2, a downstream mediator of the transforming growth factor β (TGF-β) signaling pathway as a key driver of SOD1 iPSC-derived motor neuron degeneration. Importantly, our analysis indicates that activation of TGFβ signaling may be a common mechanism shared between SOD1, FUS, C9ORF72, VCP, and sporadic ALS motor neurons. Our results demonstrate the utility of single-cell transcriptomics in mapping disease-relevant gene regulatory networks driving neurodegeneration in ALS motor neurons. We find that ALS-associated mutant SOD1 targets transcriptional networks that perturb motor neuron homeostasis. Single-cell transcriptomic analysis of SOD1 E100G ALS iPSC-derived motor neurons Mapping an ALS-relevant transcriptional network Upregulation of developmental programs in familial and sporadic ALS motor neurons Inhibition of TGFβ pathway improves SOD1 ALS iPSC-derived motor neuron survival
Collapse
Affiliation(s)
- Seema C Namboori
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Patricia Thomas
- Institute of Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Ryan Ames
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sophie Hawkins
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | | | - Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161 Rome, Italy
| | - Lawrence W Stanton
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Akshay Bhinge
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK.
| |
Collapse
|
8
|
Kedashiro S, Kameyama T, Mizutani K, Takai Y. Nectin-4 and p95-ErbB2 cooperatively regulate Hippo signaling-dependent SOX2 gene expression, enhancing anchorage-independent T47D cell proliferation. Sci Rep 2021; 11:7344. [PMID: 33795719 PMCID: PMC8016986 DOI: 10.1038/s41598-021-86437-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Nectin-4, upregulated in various cancer cells, cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, p95-ErbB2 and ErbB2∆Ex16, enhancing DNA synthesis through the PI3K-AKT signaling in human breast cancer T47D cells in an adherent culture. We found here that nectin-4 and p95-ErbB2, but not nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively enhanced SOX2 gene expression and cell proliferation in a suspension culture. This enhancement of T47D cell proliferation in a suspension culture by nectin-4 and p95-ErbB2 was dependent on the SOX2 gene expression. In T47D cells, nectin-4 and any one of p95-ErbB2, ErbB2, or ErbB2∆Ex16 cooperatively activated the PI3K-AKT signaling, known to induce the SOX2 gene expression, to similar extents. However, only a combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively enhanced the SOX2 gene expression. Detailed studies revealed that only nectin-4 and p95-ErbB2 cooperatively activated the Hippo signaling. YAP inhibited the SOX2 gene expression in this cell line and thus the MST1/2-LATS1/2 signaling-mediated YAP inactivation increased the SOX2 gene expression. These results indicate that only the combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively regulates the Hippo signaling-dependent SOX2 gene expression, enhancing anchorage-independent T47D cell proliferation.
Collapse
Affiliation(s)
- Shin Kedashiro
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
9
|
Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5:135. [PMID: 32728033 PMCID: PMC7391717 DOI: 10.1038/s41392-020-00242-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
SOX2 is a well-characterized pluripotent factor that is essential for stem cell self-renewal, reprogramming, and homeostasis. The cellular levels of SOX2 are precisely regulated by a complicated network at the levels of transcription, post-transcription, and post-translation. In many types of human cancer, SOX2 is dysregulated due to gene amplification and protein overexpression. SOX2 overexpression is associated with poor survival of cancer patients. Mechanistically, SOX2 promotes proliferation, survival, invasion/metastasis, cancer stemness, and drug resistance. SOX2 is, therefore, an attractive anticancer target. However, little progress has been made in the efforts to discover SOX2 inhibitors, largely due to undruggable nature of SOX2 as a transcription factor. In this review, we first briefly introduced SOX2 as a transcription factor, its domain structure, normal physiological functions, and its involvement in human cancers. We next discussed its role in embryonic development and stem cell-renewal. We then mainly focused on three aspects of SOX2: (a) the regulatory mechanisms of SOX2, including how SOX2 level is regulated, and how SOX2 cross-talks with multiple signaling pathways to control growth and survival; (b) the role of SOX2 in tumorigenesis and drug resistance; and (c) current drug discovery efforts on targeting SOX2, and the future perspectives to discover specific SOX2 inhibitors for effective cancer therapy.
Collapse
|
10
|
Bissey PA, Teng M, Law JH, Shi W, Bruce JP, Petit V, Tsao SW, Yip KW, Liu FF. MiR-34c downregulation leads to SOX4 overexpression and cisplatin resistance in nasopharyngeal carcinoma. BMC Cancer 2020; 20:597. [PMID: 32586280 PMCID: PMC7318489 DOI: 10.1186/s12885-020-07081-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background A major cause of disease-related death in nasopharyngeal carcinoma (NPC) is the development of distant metastasis (DM) despite combination chemoradiotherapy treatment. We previously identified and validated a four microRNA (miRNA) signature that is prognostic for DM. In this study, characterization of a key component of this signature, miR-34c, revealed its role in chemotherapy resistance. Methods Two hundred forty-six NPC patient biopsy samples were subject to comprehensive miRNA profiling and immunohistochemistry (IHC). Two human normal nasopharyngeal cell lines (immortalized; NP69 and NP460), as well as the NPC cell line C666–1, were used for miR-34c gain-of-function and loss-of-function experiments. Signaling pathways were assessed using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability was measured using the ATPlite assay. Results MiR-34c was downregulated in NPC patient samples, and confirmed in vitro to directly target SOX4, a master regulator of epithelial-to-mesenchymal transition (EMT). MiR-34c downregulation triggered EMT-representative changes in NP69 and NP460 whereby Snail, ZEB1, CDH2, and SOX2 were upregulated, while Claudin-1 and CDH1 were downregulated. Phenotypically, inhibition of miR-34c led to cisplatin resistance, whereas miR-34c over-expression sensitized NPC cells to cisplatin. TGFβ1 decreased miR-34c and increased SOX4 expression in vitro. The TGFβ receptor 1 inhibitor SB431542 reduced SOX4 expression and increased cisplatin sensitivity. Finally, IHC revealed that lower SOX4 expression was associated with improved overall survival in chemotherapy-treated NPC patients. Conclusion miR-34c is downregulated in NPC. Repression of miR-34c was shown to increase SOX4 expression, which leads to cisplatin resistance, while TGFβ1 was found to repress miR-34c expression. Taken together, our study demonstrates that inhibition of the TGFβ1 pathway could be a strategy to restore cisplatin sensitivity in NPC.
Collapse
Affiliation(s)
| | - Mona Teng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Valentin Petit
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Sai W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada. .,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Liu B, Zhou J, Wang C, Chi Y, Wei Q, Fu Z, Lian C, Huang Q, Liao C, Yang Z, Zeng H, Xu N, Guo H. LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5-mediated epigenetic regulation in glioblastoma. Cell Death Dis 2020; 11:384. [PMID: 32439916 PMCID: PMC7242335 DOI: 10.1038/s41419-020-2540-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/05/2023]
Abstract
Temozolomide (TMZ) resistance is a major cause of recurrence and poor prognosis in glioblastoma (GBM). Recently, increasing evidences suggested that long noncoding RNAs (LncRNAs) modulate GBM biological processes, especially in resistance to chemotherapy, but their role in TMZ chemoresistance has not been fully illuminated. Here, we found that LncRNA SOX2OT was increased in TMZ-resistant cells and recurrent GBM patient samples, and abnormal expression was correlated with high risk of relapse and poor prognosis. Knockdown of SOX2OT suppressed cell proliferation, facilitated cell apoptosis, and enhanced TMZ sensitivity. In addition, we identified that SOX2OT regulated TMZ sensitivity by increasing SOX2 expression and further activating the Wnt5a/β-catenin signaling pathway in vitro and in vivo. Mechanistically, further investigation revealed that SOX2OT recruited ALKBH5, which binds with SOX2, demethylating the SOX2 transcript, leading to enhanced SOX2 expression. Together, these results demonstrated that LncRNA SOX2OT inhibited cell apoptosis, promoted cell proliferation, and TMZ resistance by upregulating SOX2 expression, which activated the Wnt5a/β-catenin signaling pathway. Our findings indicate that LncRNA SOX2OT may serve as a novel biomarker for GBM prognosis and act as a therapeutic target for TMZ treatment.
Collapse
Affiliation(s)
- Boyang Liu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jian Zhou
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Chenyang Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yajie Chi
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
| | - Quantang Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhao Fu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Changlin Lian
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qiongzhen Huang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Chenxin Liao
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhao Yang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Huijun Zeng
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Ningbo Xu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Hongbo Guo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
12
|
Asparuhova MB, Chappuis V, Stähli A, Buser D, Sculean A. Role of hyaluronan in regulating self-renewal and osteogenic differentiation of mesenchymal stromal cells and pre-osteoblasts. Clin Oral Investig 2020; 24:3923-3937. [PMID: 32236725 PMCID: PMC7544712 DOI: 10.1007/s00784-020-03259-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Objectives The aim of the study was to investigate the impact of two hyaluronan (HA) formulations on the osteogenic potential of osteoblast precursors. Materials and methods Proliferation rates of HA-treated mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells were determined by 5-bromo-20-deoxyuridine (BrdU) assay. Expression of genes encoding osteogenic differentiation markers, critical growth, and stemness factors as well as activation of downstream signaling pathways in the HA-treated cells were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunoblot techniques. Results The investigated HAs strongly stimulated the growth of the osteoprogenitor lines and enhanced the expression of genes encoding bone matrix proteins. However, expression of late osteogenic differentiation markers was significantly inhibited, accompanied by decreased bone morphogenetic protein (BMP) signaling. The expression of genes encoding transforming growth factor-β1 (TGF-β1) and fibroblast growth factor-1 (FGF-1) as well as the phosphorylation of the downstream signaling molecules Smad2 and Erk1/2 were enhanced upon HA treatment. We observed significant upregulation of the transcription factor Sox2 and its direct transcription targets and critical stemness genes, Yap1 and Bmi1, in HA-treated cells. Moreover, prominent targets of the canonical Wnt signaling pathway showed reduced expression, whereas inhibitors of the pathway were considerably upregulated. We detected decrease of active β-catenin levels in HA-treated cells due to β-catenin being phosphorylated and, thus, targeted for degradation. Conclusions HA strongly induces the growth of osteoprogenitors and maintains their stemness, thus potentially regulating the balance between self-renewal and differentiation during bone regeneration following reconstructive oral surgeries. Clinical relevance Addition of HA to deficient bone or bony defects during implant or reconstructive periodontal surgeries may be a viable approach for expanding adult stem cells without losing their replicative and differentiation capabilities. Electronic supplementary material The online version of this article (10.1007/s00784-020-03259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland. .,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland. .,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| |
Collapse
|
13
|
Development of a Stromal Microenvironment Experimental Model Containing Proto-Myofibroblast Like Cells and Analysis of Its Crosstalk with Melanoma Cells: A New Tool to Potentiate and Stabilize Tumor Suppressor Phenotype of Dermal Myofibroblasts. Cells 2019; 8:cells8111435. [PMID: 31739477 PMCID: PMC6912587 DOI: 10.3390/cells8111435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Melanoma is one of the most aggressive solid tumors and includes a stromal microenvironment that regulates cancer growth and progression. The components of stromal microenvironment such as fibroblasts, fibroblast aggregates and cancer-associated fibroblasts (CAFs) can differently influence the melanoma growth during its distinct stages. In this work, we have developed and studied a stromal microenvironment model, represented by fibroblasts, proto-myofibroblasts, myofibroblasts and aggregates of inactivated myofibroblasts, such as spheroids. In particular, we have generated proto-myofibroblasts from primary cutaneous myofibroblasts. The phenotype of proto-myofibroblasts is characterized by a dramatic reduction of α-smooth muscle actin (α-SMA) and cyclooxygenase-2 (COX-2) protein levels, as well as an enhancement of cell viability and migratory capability compared with myofibroblasts. Furthermore, proto-myofibroblasts display the mesenchymal marker vimentin and less developed stress fibers, with respect to myofibroblasts. The analysis of crosstalk between the stromal microenvironment and A375 or A2058 melanoma cells has shown that the conditioned medium of proto-myofibroblasts is cytotoxic, mainly for A2058 cells, and dramatically reduces the migratory capability of both cell lines compared with the melanoma-control conditioned medium. An array analysis of proto-myofibroblast and melanoma cell-conditioned media suggests that lower levels of some cytokines and growth factors in the conditioned medium of proto-myofibroblasts could be associated with their anti-tumor activity. Conversely, the conditioned media of melanoma cells do not influence the cell viability, outgrowth, and migration of proto-myofibroblasts from spheroids. Interestingly, the conditioned medium of proto-myofibroblasts does not alter the cell viability of both BJ-5ta fibroblast cells and myofibroblasts. Hence, proto-myofibroblasts could be useful in the study of new therapeutic strategies targeting melanoma.
Collapse
|
14
|
Moreno CS. SOX4: The unappreciated oncogene. Semin Cancer Biol 2019; 67:57-64. [PMID: 31445218 DOI: 10.1016/j.semcancer.2019.08.027] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/31/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023]
Abstract
SOX4 is an essential developmental transcription factor that regulates stemness, differentiation, progenitor development, and multiple developmental pathways including PI3K, Wnt, and TGFβ signaling. The SOX4 gene is frequently amplified and overexpressed in over 20 types of malignancies, and multiple lines of evidence support that notion that SOX4 is an oncogene. Its overexpression is due to both gene amplification and to activation of PI3K, Wnt, and TGFβ pathways that SOX4 regulates. SOX4 interacts with multiple other transcription factors, rendering many of its impacts on gene expression context and tissue-specific. Nevertheless, there are common themes that run through many of the effects of SOX4 hyperactivity, such as the promotion of cell survival, stemness, the epithelial to mesenchymal transition, migration, and metastasis. Specific targeting of SOX4 remains a challenge for future cancer research and drug development.
Collapse
Affiliation(s)
- Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Whitehead Bldg, Rm 105J, 615 Michael St. Atlanta, GA, USA.
| |
Collapse
|
15
|
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2019; 67:74-82. [PMID: 31412296 DOI: 10.1016/j.semcancer.2019.08.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
The transcription factor SOX2 is essential for embryonic development and plays a crucial role in maintaining the stemness of embryonic cells and various adult stem cell populations. On the other hand, dysregulation of SOX2 expression is associated with a multitude of cancer types and it has been shown that SOX2 positively affects cancer cell traits such as the capacity to proliferate, migrate, invade and metastasize. Moreover, there is growing evidence that SOX2 mediates resistance towards established cancer therapies and that it is expressed in cancer stem cells. These findings indicate that studying the role of SOX2 in the context of cancer progression could lead to the development of new therapeutic options. In this review, the current knowledge about the role of SOX2 in development, maintenance of stemness, cancer progression and the resistance towards cancer therapies is summarized.
Collapse
Affiliation(s)
- Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jonathan J Elton
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
16
|
Hüser L, Novak D, Umansky V, Altevogt P, Utikal J. Targeting SOX2 in anticancer therapy. Expert Opin Ther Targets 2018; 22:983-991. [PMID: 30366514 DOI: 10.1080/14728222.2018.1538359] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION SOX2 is a transcription factor that is important in the development and maintenance of the stem cell state. Furthermore, SOX2 is associated with cancer progression because it promotes the migration, invasion, and proliferation of cancer cells. SOX2 is also expressed in cancer stem cells and appears to be involved in the resistance toward anticancer therapies. These features render SOX2 an attractive target for cancer therapy. Areas covered: In this review, we highlight the role of SOX2 in cancer and in the resistance toward anticancer therapies. We summarize recent studies dealing with SOX2 as a direct or indirect therapeutic target in cancer. Expert opinion: SOX2 is an attractive target in cancer therapy because of its role in cancer progression and therapy resistance. SOX2 is a transcription factor, hence direct targeting is difficult. Studies aimed at a functional depletion, for example by knock-down with siRNAs, are difficult to translate into clinical settings. Alternatively, the identification of SOX2 upstream or downstream regulators that are easier to target is of paramount importance.
Collapse
Affiliation(s)
- Laura Hüser
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Daniel Novak
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Viktor Umansky
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Peter Altevogt
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Jochen Utikal
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| |
Collapse
|
17
|
Hüser L, Sachindra S, Granados K, Federico A, Larribère L, Novak D, Umansky V, Altevogt P, Utikal J. SOX2-mediated upregulation of CD24 promotes adaptive resistance toward targeted therapy in melanoma. Int J Cancer 2018; 143:3131-3142. [PMID: 29905375 DOI: 10.1002/ijc.31609] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/06/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
Melanoma is often characterized by a constitutively active RAS-RAF-MEK-ERK pathway. For targeted therapy, BRAF inhibitors are available that are powerful in the beginning but resistance occurs rather fast. A better understanding of the mechanisms of resistance is urgently needed to increase the success of the treatment. Here, we observed that SOX2 and CD24 are upregulated upon BRAF inhibitor treatment. A similar upregulation was seen in targeted therapy-resistant, melanoma-derived induced pluripotent cancer cells (iPCCs). SOX2 and CD24 are known to promote an undifferentiated and cancer stem cell-like phenotype associated with resistance. We, therefore, elucidated the role of SOX2 and CD24 in targeted therapy resistance in more detail. We found that the upregulation of SOX2 and CD24 required activation of STAT3 and that SOX2 induced the expression of CD24 by binding to its promoter. We find that the overexpression of SOX2 or CD24 significantly increases the resistance toward BRAF inhibitors, while SOX2 knock-down rendered cells more sensitivity toward treatment. The overexpression of CD24 or SOX2 induced Src and STAT3 activity. Importantly, by either CD24 knock-down or Src/STAT3 inhibition in resistant SOX2-overexpressing cells, the sensitivity toward BRAF inhibitors was re-established. Hence, we suggest a novel mechanism of adaptive resistance whereby BRAF inhibition is circumvented via the activation of STAT3, SOX2 and CD24. Thus, to prevent adaptive resistance, it might be beneficial to combine Src/STAT3 inhibitors together with MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Sachindra Sachindra
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, D-68135, Germany
| |
Collapse
|
18
|
Chuang HM, Ho LI, Huang MH, Huang KL, Chiou TW, Lin SZ, Su HL, Harn HJ. Non-Canonical Regulation of Type I Collagen through Promoter Binding of SOX2 and Its Contribution to Ameliorating Pulmonary Fibrosis by Butylidenephthalide. Int J Mol Sci 2018; 19:ijms19103024. [PMID: 30287739 PMCID: PMC6213013 DOI: 10.3390/ijms19103024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Pulmonary fibrosis is a fatal respiratory disease that gradually leads to dyspnea, mainly accompanied by excessive collagen production in the fibroblast and myofibroblast through mechanisms such as abnormal alveolar epithelial cells remodeling and stimulation of the extracellular matrix (ECM). Our results show that a small molecule, butylidenephthalide (BP), reduces type I collagen (COL1) expression in Transforming Growth Factor beta (TGF-β)-induced lung fibroblast without altering downstream pathways of TGF-β, such as Smad phosphorylation. Treatment of BP also reduces the expression of transcription factor Sex Determining Region Y-box 2 (SOX2), and the ectopic expression of SOX2 overcomes the inhibitory actions of BP on COL1 expression. We also found that serial deletion of the SOX2 binding site on 3′COL1 promoter results in a marked reduction in luciferase activity. Moreover, chromatin immunoprecipitation, which was found on the SOX2 binding site of the COL1 promoter, decreases in BP-treated cells. In an in vivo study using a bleomycin-induced pulmonary fibrosis C57BL/6 mice model, mice treated with BP displayed reduced lung fibrosis and collagen deposition, recovering in their pulmonary ventilation function. The reduction of SOX2 expression in BP-treated lung tissues is consistent with our findings in the fibroblast. This is the first report that reveals a non-canonical regulation of COL1 promoter via SOX2 binding, and contributes to the amelioration of pulmonary fibrosis by BP treatment.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan.
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Li-Ing Ho
- Division of Respiratory Therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Mao-Hsuan Huang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan.
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Kun-Lun Huang
- Hyperbaric Oxygen Therapy Center, Division of Pulmonary and Critical Care Medicine, Graduate Institute of Aerospace and Undersea Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan.
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien 970, Taiwan.
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan.
- Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
19
|
Qu M, Zhu Y, Jin M. MicroRNA-138 inhibits SOX12 expression and the proliferation, invasion and migration of ovarian cancer cells. Exp Ther Med 2018; 16:1629-1638. [PMID: 30186381 PMCID: PMC6122409 DOI: 10.3892/etm.2018.6375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the expression and biological functions of microRNA (miR)-138 in ovarian cancer at the tissue and cellular levels, as well as its underlying mechanisms. A total of 47 patients with ovarian cancer were included in the present study. Ovarian cancer tissues were subjected to staging classification according to the FIGO 2000 criteria. Lymphatic metastasis was also examined. Ovarian cancer A2780 cells were transfected using liposomes. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression of miR-138. A Cell-Counting Kit 8 assay was used to examine cell viability, while a Transwell assay was employed to study cell invasion and migration. The effects of miR-138 on SOX12 protein expression were examined by western blot analysis. A dual luciferase reporter assay was performed to identify the direct interaction between miR-138 and SOX12 gene. Expression of miR-138 was downregulated in ovarian cancer tissues. The level of miR-138 in patients with ovarian cancer with lymphatic metastasis was significantly lower compared with patients without lymphatic metastasis. However, expression of miR-138 was not associated with the stage of ovarian cancer. Upregulation of miR-138 inhibited the proliferation and suppressed the invasion and migration of A2780 cells. SOX12 promoted the proliferation, invasion and migration of A2780 cells. In addition, miR-138 downregulated the expression of SOX12 via binding with the 3′-UTR of SOX12 gene. The present study demonstrates that miR-138 expression is downregulated in ovarian cancer tissues and miR-138 acts as a tumor suppressor gene by inhibiting SOX12 expression and the proliferation, invasion and migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Miaomiao Qu
- Department of Obstetrics, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Yongning Zhu
- Department of Obstetrics, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Meng Jin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| |
Collapse
|
20
|
Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma. Oncogene 2018; 37:4626-4632. [PMID: 29743593 PMCID: PMC6195857 DOI: 10.1038/s41388-018-0292-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023]
Abstract
The stem cell transcription factor Sox2 is highly expressed in many cancers where it is thought to mark cancer stem cells (CSC). In osteosarcomas, the most common bone malignancy, high Sox2 expression marks and maintains a fraction of tumor initiating cells that show all the properties of CSC. Knock down of Sox2 expression abolishes tumorigenicity and suppresses the CSC phenotype. Here we show that, in a mouse model of osteosarcoma, osteoblast-specific Sox2 conditional knockout (CKO) causes a drastic reduction in the frequency and onset of tumors. The rare tumors detected in the Sox2 CKO animals were all Sox2 positive, indicating that they arose from cells that had escaped Sox2 deletion. Furthermore Sox2 inactivation in cultured osteosarcoma cells by CRISPR/CAS technology leads to a loss of viability and proliferation of the entire cell population. Inactivation of the YAP gene, a major Hippo Pathway effector which is a direct Sox2 target, causes similar results and YAP overexpression rescues cells from the lethality caused by Sox2 inactivation. These effects were osteosarcoma-specific, suggesting a mechanism of cell “addiction” to Sox2 initiated pathways. The requirement for Sox2 for osteosarcoma formation as well as for the survival of the tumor cells suggests that disruption of Sox2-initiated pathways could be an effective strategy for the treatment of osteosarcoma.
Collapse
|
21
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
22
|
Brighton HE, Angus SP, Bo T, Roques J, Tagliatela AC, Darr DB, Karagoz K, Sciaky N, Gatza ML, Sharpless NE, Johnson GL, Bear JE. New Mechanisms of Resistance to MEK Inhibitors in Melanoma Revealed by Intravital Imaging. Cancer Res 2018; 78:542-557. [PMID: 29180473 PMCID: PMC6132242 DOI: 10.1158/0008-5472.can-17-1653] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022]
Abstract
Targeted therapeutics that are initially effective in cancer patients nearly invariably engender resistance at some stage, an inherent challenge in the use of any molecular-targeted drug in cancer settings. In this study, we evaluated resistance mechanisms arising in metastatic melanoma to MAPK pathway kinase inhibitors as a strategy to identify candidate strategies to limit risks of resistance. To investigate longitudinal responses, we developed an intravital serial imaging approach that can directly visualize drug response in an inducible RAF-driven, autochthonous murine model of melanoma incorporating a fluorescent reporter allele (tdTomatoLSL). Using this system, we visualized formation and progression of tumors in situ, starting from the single-cell level longitudinally over time. Reliable reporting of the status of primary murine tumors treated with the selective MEK1/2 inhibitor (MEKi) trametinib illustrated a time-course of initial drug response and persistence, followed by the development of drug resistance. We found that tumor cells adjacent to bundled collagen had a preferential persistence in response to MEKi. Unbiased transcriptional and kinome reprogramming analyses from selected treatment time points suggested increased c-Kit and PI3K/AKT pathway activation in resistant tumors, along with enhanced expression of epithelial genes and epithelial-mesenchymal transition downregulation signatures with development of MEKi resistance. Similar trends were observed following simultaneous treatment with BRAF and MEK inhibitors aligned to standard-of-care combination therapy, suggesting these reprogramming events were not specific to MEKi alone. Overall, our results illuminate the integration of tumor-stroma dynamics with tissue plasticity in melanoma progression and provide new insights into the basis for drug response, persistence, and resistance.Significance: A longitudinal study tracks the course of MEKi treatment in an autochthonous imageable murine model of melanoma from initial response to therapeutic resistance, offering new insights into the basis for drug response, persistence, and resistance. Cancer Res; 78(2); 542-57. ©2017 AACR.
Collapse
Affiliation(s)
- Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Steven P Angus
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tao Bo
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jose Roques
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alicia C Tagliatela
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David B Darr
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kubra Karagoz
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael L Gatza
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Norman E Sharpless
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gary L Johnson
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Thyagarajan A, Saylae J, Sahu RP. Acetylsalicylic acid inhibits the growth of melanoma tumors via SOX2-dependent-PAF-R-independent signaling pathway. Oncotarget 2017; 8:49959-49972. [PMID: 28636992 PMCID: PMC5564820 DOI: 10.18632/oncotarget.18326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/06/2017] [Indexed: 12/17/2022] Open
Abstract
Acquired resistance to standard therapies remains a serious challenge, requiring novel therapeutic approaches that incorporate potential factors involved in tumor resistance. As cancers including melanoma express inflammatory cyclooxygenases generating prostaglandins implicated in tumor growth, we investigated mechanism of anti-inflammatory drug, acetylsalicylic acid (ASA) which has been shown to inhibit various tumor types, however, its effects against highly aggressive melanoma model are unclear. Given our reports that an activation of platelet-activating factor-receptor (PAF-R) augments the growth and impede efficacies of therapeutic agents in experimental melanoma, we also sought to determine if PAF-R mediates anti-melanoma activity of ASA. The current studies using stably PAF-R-positive (B16-PAFR) and negative (B16-MSCV) murine melanoma cells and PAF-R-expressing and deficient mice, demonstrate that ASA inhibits the in-vitro and in-vivo growth of highly aggressive B16F10 melanoma via bypassing tumoral or stromal PAF-R signaling. Similar ASA-induced effects in-vitro were seen in human melanoma and nasopharyngeal carcinoma cells positive or negative in PAF-R. Mechanistically, the ASA-induced decrease in cell survival and increase in apoptosis were significantly blocked by prostaglandin F2 alpha (PGF2α) agonists. Importantly, PCR array and qRT-PCR analysis of B16-tumors revealed significant downregulation of sry-related high-mobility-box-2 (SOX2) oncogene by ASA treatment. Interestingly, modulation of SOX2 expression by PGF2α agonists and upregulation by fibroblast growth factor 1 (FGF-1) rescued melanoma cells from ASA-induced decreased survival and increased apoptosis. Moreover, PGF2α-receptor antagonist, AL8810 mimics ASA-induced decreased melanoma cells survival which was significantly blocked by PGF2α and FGF-1. These findings indicate that ASA inhibits the growth of aggressive melanoma via SOX2-dependent-PAF-R-indepedent pathway.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Jeremiah Saylae
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| |
Collapse
|
24
|
Bernhardt M, Novak D, Assenov Y, Orouji E, Knappe N, Weina K, Reith M, Larribere L, Gebhardt C, Plass C, Umansky V, Utikal J. Melanoma-Derived iPCCs Show Differential Tumorigenicity and Therapy Response. Stem Cell Reports 2017; 8:1379-1391. [PMID: 28392221 PMCID: PMC5425615 DOI: 10.1016/j.stemcr.2017.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/10/2023] Open
Abstract
A point mutation in the BRAF gene, leading to a constitutively active form of the protein, is present in 45%–60% of patients and acts as a key driver in melanoma. Shortly after therapy induction, resistance to MAPK pathway-specific inhibitors develops, indicating that pathway inhibition is circumvented by epigenetic mechanisms. Here, we mimicked epigenetic modifications in melanoma cells by reprogramming them into metastable induced pluripotent cancer cells (iPCCs) with the ability to terminally differentiate into non-tumorigenic lineages. iPCCs and their differentiated progeny were characterized by an increased resistance against targeted therapies, although the cells harbor the same oncogenic mutations and signaling activity as the parental melanoma cells. Furthermore, induction of a pluripotent state allowed the melanoma-derived cells to acquire a non-tumorigenic cell fate, further suggesting that tumorigenicity is influenced by the cell state. Human melanoma cells reprogrammed toward an iPSC-like state (iPCCs) iPCCs differentiated into neurons and fibroblasts iPCC-derived fibroblasts show no tumorigenic potential iPCCs and iPCC-derived fibroblasts lose oncogene addiction
Collapse
Affiliation(s)
- Mathias Bernhardt
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Elias Orouji
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Nathalie Knappe
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Kasia Weina
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Maike Reith
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Lionel Larribere
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Christoffer Gebhardt
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Viktor Umansky
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany.
| |
Collapse
|
25
|
Sox2 is dispensable for primary melanoma and metastasis formation. Oncogene 2017; 36:4516-4524. [PMID: 28368416 DOI: 10.1038/onc.2017.55] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
Abstract
Tumor initiation and metastasis formation in many cancers have been associated with emergence of a gene expression program normally active in embryonic or organ-specific stem cells. In particular, the stem cell transcription factor Sox2 is not only expressed in a variety of tumors, but is also required for their formation. Melanoma, the most aggressive skin tumor, derives from melanocytes that during development originate from neural crest stem cells. While neural crest stem cells do not express Sox2, expression of this transcription factor has been reported in melanoma. However, the role of Sox2 in melanoma is controversial. To study the requirement of Sox2 for melanoma formation, we therefore performed CRISPR-Cas9-mediated gene inactivation in human melanoma cells. In addition, we conditionally inactivated Sox2 in a genetically engineered mouse model, in which melanoma spontaneously develops in the context of an intact stroma and immune system. Surprisingly, in both models, loss of Sox2 did neither affect melanoma initiation, nor growth, nor metastasis formation. The lack of a tumorigenic role of Sox2 in melanoma might reflect a distinct stem cell program active in neural crest stem cells and during melanoma formation.
Collapse
|