1
|
Renauld JM, Iskusnykh IY, Yamoah EN, Smith RJH, Affortit C, He DZ, Liu H, Nichols D, Bouma J, Nayak MK, Weng X, Qin T, Sham MH, Chizhikov VV, Fritzsch B. Lmx1a is essential for marginal cell differentiation and stria vascularis formation. Front Cell Dev Biol 2025; 13:1537505. [PMID: 40109362 PMCID: PMC11920146 DOI: 10.3389/fcell.2025.1537505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
The transcription factor Lmx1a is widely expressed during early inner ear development, and mice lacking Lmx1a expression exhibit fusion of cochlear and vestibular hair cells and fail to form the ductus reuniens and the endolymphatic sac. Lmx1a dreher (Lmx1a dr/dr ), a recessive null mutation, results in non-functional Lmx1a expression, which expands from the outer sulcus to the stria vascularis and Reissner's membrane. In the absence of Lmx1a, we observe a lack of proteins specific to the stria vascularis, such as BSND and KCNQ1 in marginal cells and CD44 in intermediate cells. Further analysis of the superficial epithelial cell layer at the expected stria vascularis location shows that the future intermediate cells migrate during embryonic development but subsequently disappear. Using antibodies against pendrin (Slc26a4) in Lmx1a knockout (KO) mice, we observe an expansion of pendrin expression across the stria vascularis and Reissner's membrane. Moreover, in the absence of Lmx1a expression, no endocochlear potential is observed. These findings highlight the critical role of Lmx1a in inner ear development, particularly in the differentiation of cochlear and vestibular structures, the recruitment of pigment cells, and the expression of proteins essential for hearing and balance.
Collapse
Affiliation(s)
- Justine M. Renauld
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Igor Y. Iskusnykh
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ebenezer N. Yamoah
- Department of Translational Neuroscience, College of Medicine, University of Arizona, Pheonix, AZ, United States
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Corentin Affortit
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - David Z. He
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - David Nichols
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Judith Bouma
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Mahesh K. Nayak
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Xin Weng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tianli Qin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mai Har Sham
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Thulasiram MR, Yamamoto R, Olszewski RT, Gu S, Morell RJ, Hoa M, Dabdoub A. Molecular differences between young and mature stria vascularis from organotypic explants and transcriptomics. iScience 2025; 28:111832. [PMID: 40028281 PMCID: PMC11869990 DOI: 10.1016/j.isci.2025.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/31/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
The stria vascularis (SV) is an essential component of the inner ear that regulates the ionic environment required for hearing. SV degeneration disrupts cochlear homeostasis, leading to irreversible hearing loss, yet a comprehensive understanding of the SV, and consequently therapeutic availability for SV degeneration, is lacking. We developed a whole-tissue explant model from neonatal and mature mice to create a platform for advancing SV research. We validated our model by demonstrating that the proliferative behavior of the SV in vitro mimics SV in vivo. We also provided evidence for pharmacological experimentation by investigating the role of Wnt/β-catenin signaling in SV proliferation. Finally, we performed single-cell RNA sequencing from in vivo neonatal and mature mouse SV and surrounding tissue and revealed key genes and pathways that may play a role in SV proliferation and maintenance. Together, our results contribute new insights into investigating biological solutions for SV-associated hearing loss.
Collapse
Affiliation(s)
- Matsya Ruppari Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ryosuke Yamamoto
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre Toronto, ON M4N 3M5, Canada
| | - Rafal T. Olszewski
- Auditory Development and Restoration Program, NIDCD Otolaryngology-Surgeon-Scientist Program, NIDCD Neurotology Branch, Division of Intramural Research, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, NIDCD Otolaryngology-Surgeon-Scientist Program, NIDCD Neurotology Branch, Division of Intramural Research, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert J. Morell
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, NIDCD Otolaryngology-Surgeon-Scientist Program, NIDCD Neurotology Branch, Division of Intramural Research, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre Toronto, ON M4N 3M5, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Huang M, Wen Z, Huang T, Zhou X, Wang Z, Yang S, Zhao A. The Impact of Mutant EDNRB on the Two-End Black Coat Color Phenotype in Chinese Local Pigs. Animals (Basel) 2025; 15:478. [PMID: 40002960 PMCID: PMC11851453 DOI: 10.3390/ani15040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Endothelin Receptor Type B (EDNRB) is expressed in a variety of cells during embryonic stage, including melanocyte precursors cells. Our previous studies found that 11 bp deletion of EDNRB caused the two-end black (TEB) coat color in Chinese pigs. In this study, we aimed to explore the mutant EDNRB on the formation of TEB coat color in Chinese pigs. We constructed recombinant plasmid for wild and mutant EDNRB and EDN1, respectively, and transfected the recombinant plasmid into mouse B16 melanoma cells in groups. Real-time fluorescent quantitative PCR (RT-qPCR) was performed to detect expression of genes that participate in melanin pathway, including PLCγ, Raf, MITF. Comparing to the wild-type EDNRB cells, expression of the three genes in the cell line expressing mutant EDNRB cells was significantly reduced. We measured the melanin content produced by transfected recombinant granulocytes of wild and mutant EDNRB and found that the amount of melanin in mutant EDNRB cells was significantly lower than that of the wild. Wound-healing assay confirmed that the migration and mobility rate of mutant EDNRB cells were significantly lower than the wild. Co-immunoprecipitation further confirmed that mutant EDNRB could not interact with the EDN1 protein. In conclusion, this study revealed that the 11 bp deletion of EDNRB reduced the melanin production, which may be caused by inhibiting the expression of PLCγ, Raf, and MITF. The mutant EDNRB reduced melanocyte migration and could not interact with the EDN1 protein. We explored the effect of mutant EDNRB in Chinese pigs with TEB coat color, and the results provided a reference for exploring molecular mechanism of mutant EDNRB on the formation of TEB coat color pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ayong Zhao
- College of Animal Science and Technology · College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (M.H.); (Z.W.); (T.H.); (X.Z.); (Z.W.); (S.Y.)
| |
Collapse
|
4
|
Thulasiram MR, Yamamoto R, Olszewski RT, Gu S, Morell RJ, Hoa M, Dabdoub A. Molecular differences between neonatal and adult stria vascularis from organotypic explants and transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590986. [PMID: 38712156 PMCID: PMC11071502 DOI: 10.1101/2024.04.24.590986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Summary The stria vascularis (SV), part of the blood-labyrinth barrier, is an essential component of the inner ear that regulates the ionic environment required for hearing. SV degeneration disrupts cochlear homeostasis, leading to irreversible hearing loss, yet a comprehensive understanding of the SV, and consequently therapeutic availability for SV degeneration, is lacking. We developed a whole-tissue explant model from neonatal and adult mice to create a robust platform for SV research. We validated our model by demonstrating that the proliferative behaviour of the SV in vitro mimics SV in vivo, providing a representative model and advancing high-throughput SV research. We also provided evidence for pharmacological intervention in our system by investigating the role of Wnt/β-catenin signaling in SV proliferation. Finally, we performed single-cell RNA sequencing from in vivo neonatal and adult mouse SV and revealed key genes and pathways that may play a role in SV proliferation and maintenance. Together, our results contribute new insights into investigating biological solutions for SV-associated hearing loss. Significance Hearing loss impairs our ability to communicate with people and interact with our environment. This can lead to social isolation, depression, cognitive deficits, and dementia. Inner ear degeneration is a primary cause of hearing loss, and our study provides an in depth look at one of the major sites of inner ear degeneration: the stria vascularis. The stria vascularis and associated blood-labyrinth barrier maintain the functional integrity of the auditory system, yet it is relatively understudied. By developing a new in vitro model for the young and adult stria vascularis and using single cell RNA sequencing, our study provides a novel approach to studying this tissue, contributing new insights and widespread implications for auditory neuroscience and regenerative medicine. Highlights - We established an organotypic explant system of the neonatal and adult stria vascularis with an intact blood-labyrinth barrier. - Proliferation of the stria vascularis decreases with age in vitro , modelling its proliferative behaviour in vivo . - Pharmacological studies using our in vitro SV model open possibilities for testing injury paradigms and therapeutic interventions. - Inhibition of Wnt signalling decreases proliferation in neonatal stria vascularis.- We identified key genes and transcription factors unique to developing and mature SV cell types using single cell RNA sequencing.
Collapse
|
5
|
Udagawa T, Takahashi E, Tatsumi N, Mutai H, Saijo H, Kondo Y, Atkinson PJ, Matsunaga T, Yoshikawa M, Kojima H, Okabe M, Cheng AG. Loss of Pax3 causes reduction of melanocytes in the developing mouse cochlea. Sci Rep 2024; 14:2210. [PMID: 38278860 PMCID: PMC10817906 DOI: 10.1038/s41598-024-52629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Cochlear melanocytes are intermediate cells in the stria vascularis that generate endocochlear potentials required for auditory function. Human PAX3 mutations cause Waardenburg syndrome and abnormalities of skin and retinal melanocytes, manifested as congenital hearing loss (~ 70%) and hypopigmentation of skin, hair and eyes. However, the underlying mechanism of hearing loss remains unclear. Cochlear melanocytes in the stria vascularis originated from Pax3-traced melanoblasts and Plp1-traced Schwann cell precursors, both of which derive from neural crest cells. Here, using a Pax3-Cre knock-in mouse that allows lineage tracing of Pax3-expressing cells and disruption of Pax3, we found that Pax3 deficiency causes foreshortened cochlea, malformed vestibular apparatus, and neural tube defects. Lineage tracing and in situ hybridization show that Pax3+ derivatives contribute to S100+, Kir4.1+ and Dct+ melanocytes (intermediate cells) in the developing stria vascularis, all of which are significantly diminished in Pax3 mutant animals. Taken together, these results suggest that Pax3 is required for the development of neural crest cell-derived cochlear melanocytes, whose absence may contribute to congenital hearing loss of Waardenburg syndrome in humans.
Collapse
Affiliation(s)
- Tomokatsu Udagawa
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan.
- Department of Otorhinolaryngology, Toho University School of Medicine, Tokyo, Japan.
| | - Erisa Takahashi
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Norifumi Tatsumi
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideki Mutai
- Division Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Hiroki Saijo
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kondo
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Patrick J Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tatsuo Matsunaga
- Division Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Mamoru Yoshikawa
- Department of Otorhinolaryngology, Toho University School of Medicine, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Udagawa T, Takahashi E, Tatsumi N, Mutai H, Kondo Y, Atkinson PJ, Matsunaga T, Yoshikawa M, Kojima H, Okabe M, Cheng AG. Pax3 deficiency diminishes melanocytes in the developing mouse cochlea. RESEARCH SQUARE 2023:rs.3.rs-2990436. [PMID: 37333245 PMCID: PMC10274955 DOI: 10.21203/rs.3.rs-2990436/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cochlear melanocytes are intermediate cells in the stria vascularis that generate endocochlear potentials required for auditory function. Human PAX3 mutations cause Waardenburg syndrome and abnormalities of melanocytes, manifested as congenital hearing loss and hypopigmentation of skin, hair and eyes. However, the underlying mechanism of hearing loss remains unclear. During development, cochlear melanocytes in the stria vascularis are dually derived from Pax3-Cre+ melanoblasts migrating from neuroepithelial cells including neural crest cells and Plp1+ Schwann cell precursors originated from also neural crest cells, differentiating in a basal-apical manner. Here, using a Pax3-Cre mouse line, we found that Pax3 deficiency causes foreshortened cochlea, malformed vestibular apparatus, and neural tube defects. Lineage tracing and in situ hybridization show that Pax3-Cre derivatives contribute to S100+ , Kir4.1+ and Dct+ melanocytes (intermediate cells) in the developing stria vascularis, all significantly diminished in Pax3 mutant animals. Taken together, these results suggest that Pax3 is required for the development of neural crest cell-derived cochlear melanocytes, whose absence may contribute to congenital hearing loss of Waardenburg syndrome in human.
Collapse
|
7
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
8
|
Ma X, Guo J, Fu Y, Shen C, Jiang P, Zhang Y, Zhang L, Yu Y, Fan J, Chai R. G protein-coupled receptors in cochlea: Potential therapeutic targets for hearing loss. Front Mol Neurosci 2022; 15:1028125. [PMID: 36311029 PMCID: PMC9596917 DOI: 10.3389/fnmol.2022.1028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hearing loss-related diseases caused by different factors is increasing worldwide year by year. Currently, however, the patient’s hearing loss has not been effectively improved. Therefore, there is an urgent need to adopt new treatment measures and treatment techniques to help improve the therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as crucial cell surface receptors, can widely participate in different physiological and pathological processes, particularly play an essential role in many disease occurrences and be served as promising therapeutic targets. However, no specific drugs on the market have been found to target the GPCRs of the cochlea. Interestingly, many recent studies have demonstrated that GPCRs can participate in various pathogenic process related to hearing loss in the cochlea including heredity, noise, ototoxic drugs, cochlear structure, and so on. In this review, we comprehensively summarize the functions of 53 GPCRs known in the cochlea and their relationships with hearing loss, and highlight the recent advances of new techniques used in cochlear study including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and CRISPR editing technology, as well as discuss in depth the future direction of novel GPCR-based drug development and gene therapy for cochlear hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical research in this area, and provide beneficial help for emerging GPCR-based cochlear therapies.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cangsong Shen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Yafeng Yu,
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Jiangang Fan,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
9
|
Renauld JM, Khan V, Basch ML. Intermediate Cells of Dual Embryonic Origin Follow a Basal to Apical Gradient of Ingression Into the Lateral Wall of the Cochlea. Front Cell Dev Biol 2022; 10:867153. [PMID: 35372344 PMCID: PMC8964366 DOI: 10.3389/fcell.2022.867153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023] Open
Abstract
Intermediate cells of the stria vascularis are neural crest derived melanocytes. They are essential for the establishment of the endocochlear potential in the inner ear, which allows mechanosensory hair cells to transduce sound into nerve impulses. Despite their importance for normal hearing, how these cells develop and migrate to their position in the lateral wall of the cochlea has not been studied. We find that as early as E10.5 some Schwann cell precursors in the VIIIth ganglion begin to express melanocyte specific markers while neural crest derived melanoblasts migrate into the otic vesicle. Intermediate cells of both melanoblast and Schwann cell precursor origin ingress into the lateral wall of the cochlea starting at around E15.5 following a basal to apical gradient during embryonic development, and continue to proliferate postnatally.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vibhuti Khan
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Martín L Basch
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Otolaryngology, Head and Neck Surgery, University Hospitals, Cleveland, OH, United States
| |
Collapse
|
10
|
Brancalion L, Haase B, Wade CM. Canine coat pigmentation genetics: a review. Anim Genet 2021; 53:3-34. [PMID: 34751460 DOI: 10.1111/age.13154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Our understanding of canine coat colour genetics and the associated health implications is developing rapidly. To date, there are 15 genes with known roles in canine coat colour phenotypes. Many coat phenotypes result from complex and/or epistatic genetic interactions among variants within and between loci, some of which remain unidentified. Some genes involved in canine pigmentation have been linked to aural, visual and neurological impairments. Consequently, coat pigmentation in the domestic dog retains considerable ethical and economic interest. In this paper we discuss coat colour phenotypes in the domestic dog, the genes and variants responsible for these phenotypes and any proven coat colour-associated health effects.
Collapse
Affiliation(s)
- L Brancalion
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - B Haase
- Faculty of Science, School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - C M Wade
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
11
|
Renauld JM, Davis W, Cai T, Cabrera C, Basch ML. Transcriptomic analysis and ednrb expression in cochlear intermediate cells reveal developmental differences between inner ear and skin melanocytes. Pigment Cell Melanoma Res 2021; 34:585-597. [PMID: 33484097 PMCID: PMC8186279 DOI: 10.1111/pcmr.12961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
In the inner ear, the neural crest gives rise to the glia of the VIII ganglion and two types of melanocytic cells: The pigmented cells of the vestibular system and intermediate cells of the stria vascularis. We analyzed the transcriptome of neonatal intermediate cells in an effort to better understand the development of the stria vascularis. We found that the expression of endothelin receptor B, which is essential for melanocyte development, persists in intermediate cells long after birth. In contrast, skin melanocytes rapidly downregulate the expression of EdnrB. Our findings suggest that endothelins might have co‐opted new functions in the inner ear during evolution of the auditory organ.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - William Davis
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Cabrera
- Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, OH, USA
| | - Martin L Basch
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, OH, USA.,Department of Biology, Case Western Reserve School of Medicine, Cleveland, OH, USA
| |
Collapse
|