1
|
Noble JA. Fifty years of HLA-associated type 1 diabetes risk: history, current knowledge, and future directions. Front Immunol 2024; 15:1457213. [PMID: 39328411 PMCID: PMC11424550 DOI: 10.3389/fimmu.2024.1457213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
More than 50 years have elapsed since the association of human leukocyte antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods for identification of HLA have progressed from cell based to DNA based, and the number of recognized HLA variants has grown from a few to tens of thousands. Current genotyping methodology allows for exact identification of all HLA-encoding genes in an individual's genome, with statistical analysis methods evolving to digest the enormous amount of data that can be produced at an astonishing rate. The HLA region of the genome has been repeatedly shown to be the most important genetic risk factor for T1D, and the original reported associations have been replicated, refined, and expanded. Even with the remarkable progress through 50 years and over 5,000 reports, a comprehensive understanding of all effects of HLA on T1D remains elusive. This report represents a summary of the field as it evolved and as it stands now, enumerating many past and present challenges, and suggests possible paradigm shifts for moving forward with future studies in hopes of finally understanding all the ways in which HLA influences the pathophysiology of T1D.
Collapse
Affiliation(s)
- Janelle A. Noble
- Children’s Hospital Oakland Research Institute,
Oakland, CA, United States
- University of California San Francisco, Oakland,
CA, United States
| |
Collapse
|
2
|
Zhao T, Cao Q, Zhou C, Wang Y, Du L, Yang P. Association Between HLA Polymorphisms and Sympathetic Ophthalmia in Han Chinese. Ocul Immunol Inflamm 2024; 32:1189-1196. [PMID: 37145421 DOI: 10.1080/09273948.2023.2205930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Sympathetic ophthalmia (SO) is considered as an autoimmune disease with unclear mechanisms. This study investigated the relationship between HLA polymorphisms and SO. METHODS HLA typing was performed using the LABType reverse SSO DNA typing method. The allele and haplotype frequencies were assessed using the PyPop software. Statistical significance of genotype distributions between 116 patients and 84 healthy individuals (control) was determined using Fisher's exact test or Pearson's chi-squared test. RESULTS The SO group had a higher frequency of HLA-DRB1 * 04:05, HLA-DQB1 * 04:01, DRB1 * 04:05-DQB1 * 04:01 haplotype as compared to the control group (Pc < 0.001 for all). CONCLUSION This study revealed that DRB1 * 04:05 and DQB1 * 04:01 alleles, as well as DRB1 * 04:05-DQB1 * 04:01 haplotye could be potential risk factors for SO.
Collapse
Affiliation(s)
- Tingting Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Yao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Liao WL, Huang YN, Chang YW, Liu TY, Lu HF, Tiao ZY, Su PH, Wang CH, Tsai FJ. Combining polygenic risk scores and human leukocyte antigen variants for personalized risk assessment of type 1 diabetes in the Taiwanese population. Diabetes Obes Metab 2023; 25:2928-2936. [PMID: 37455666 DOI: 10.1111/dom.15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
AIMS To analyse the genome-wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population. MATERIALS AND METHODS We selected 610 patients with T1D and 2511 healthy individuals from an electronic medical record database of more than 300 000 individuals with genetic information, analysed their GWAS data, and developed a polygenic risk score (PRS). RESULTS The PRS, based on 149 selected single-nucleotide polymorphisms, could effectively predict T1D risk. A PRS increase was associated with increased T1D risk (odds ratio [OR] 2.09, 95% confidence interval [CI] 1.72-2.55). Moreover, a 1-unit increase in standardized T1D PRS decreased the age at diagnosis by 0.74 years. Combined PRS and human leukocyte antigen (HLA) DQA1*03:02-DQA1*05:01 genotypes could accurately predict T1D risk. In multivariable models, HLA variants and PRS were independent risk factors for T1D risk (OR 3.76 [95% CI 1.54-9.16] and 1.71 [95% CI 1.37-2.13] for HLA DQA1*03:02-DQA1*05:01 and PRS, respectively). In a limited study population of those aged ≤18 years, PRS remained significantly associated with T1D risk. The association between T1D PRS and age at diagnosis was more obvious among males and patients aged ≤18 years. CONCLUSIONS Polygenic risk score and HLA variations enable personalized risk estimates, enhance newborn screening efficiency for ketoacidosis prevention, and addresses the gap in data on T1D prediction in isolated Asian populations.
Collapse
Affiliation(s)
- Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Nan Huang
- Division of Genetics and Metabolism, Children's Hospital of China Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Wen Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsing-Fang Lu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zih-Yu Tiao
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Hsing Wang
- Division of Genetics and Metabolism, Children's Hospital of China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Machhua S, Sharma SK, Kumar Y, Singh S, Aggarwal R, Anand S, Kumar M, Singh H, Minz RW. Human leukocyte antigen association in systemic sclerosis patients: our experience at a tertiary care center in North India. Front Immunol 2023; 14:1179514. [PMID: 37781395 PMCID: PMC10533912 DOI: 10.3389/fimmu.2023.1179514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Systemic sclerosis (SSc) is a chronic multisystem autoimmune rheumatic disease of unknown etiology. Several studies have established that SSc is triggered by a dynamic interplay between genetic factors and environmental stimuli. In the present study, we aimed to study the association of human leukocyte antigen (HLA) with familial and non-familial SSc patients [limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc)] from North India. Methods The HLA-A, B, DRB1, and DQB1 genotyping of 150 (70 lcSSc and 80 dcSSc) adult-onset SSc patients and 150 age-gender-matched healthy controls were performed with sequence-specific oligonucleotide (SSO) typing kits using the luminex platform. HLA typing for HLA class I (A, B, and C) and II (DRB1, DQB1, and DPB1) in five North Indian families consisting of parent-child/sibling pairs affected with SSc or overlap syndrome was performed by Next Generation Sequencing (NGS) with Illumina MiniSeq. Rseults Among the non-familial SSc patients, HLA- DRB1*11 (P = 0.001, OR: 2.38, P c = 0.01) was identified as a risk allele, and DRB1*12 (P = .0001, OR: 0.00, P c = 0.001) as a protective allele. There was no statistical association found with HLA-DQB1*. Also, no significant association was observed between HLA antigens and different clinical subsets (lcSSc and dcSSc) of SSc. Two cases of familial SSc patients had the DRB1*11 allele. The DRB1*12 allele was absent in all the familial SSc patients. Discussion HLA DRB1*11 (risk allele) and DRB1*12 (protective allele) were found to be strongly associated with non-familial SSc patients and partially explain the disease's familial clustering, supporting the susceptible genetic background theory for SSc development. The study also indicates the HLA allele as a common genetic risk factor in distinct autoimmune diseases contributing to overlap syndrome or polyautoimmunity.
Collapse
Affiliation(s)
- Sanghamitra Machhua
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shefali Khanna Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritu Aggarwal
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shashi Anand
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Heera Singh
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Xia Y, Chen Y, Li X, Luo S, Lin J, Huang G, Xiao Y, Chen Z, Xie Z, Zhou Z. HLA Class I Association With Autoimmune Diabetes in Chinese People: Distinct Implications in Classic Type 1 Diabetes and LADA. J Clin Endocrinol Metab 2023; 108:e404-e414. [PMID: 36652403 DOI: 10.1210/clinem/dgad006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
CONTEXT We aimed to investigate whether human leukocyte antigen (HLA) Class I loci differentially modulated the risk for and clinical features of Chinese people with classic type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA). METHODS In this case-control study, genotypes of HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 loci were obtained from 1067 cases with classic T1D, 1062 cases with LADA, and 1107 normal controls using next-generation sequencing. RESULTS Despite 4 alleles shared between classic T1D and LADA (protective: A*02:07 and B*46:01; susceptible: B*54:01 and C*08:01), 7 Class I alleles conferred risk exclusively for classic T1D (A*24:02, B*15:02, B*15:18, B*39:01, B*40:06, B*48:01, and C*07:02) whereas only A*02:01 was an additional risk factor for LADA. Class I alleles affected a wide spectrum of T1D clinical features, including positive rate of protein tyrosine phosphatase autoantibody and zinc transporter 8 autoantibody (A*24:02), C-peptide levels (A*24:02), and age at diagnosis (B*46:01, C*01:02, B*15:02, C*07:02, and C*08:01). By contrast, except for the detrimental effect of C*08:01 on C-peptide concentrations in LADA, no other Class I associations with clinical characteristics of LADA could be reported. The addition of Class I alleles refined the risk model consisting only of DR-DQ data in classic T1D while the overall predictive value of the LADA risk model comprising both Class I and II information was relatively low. CONCLUSION The attenuated HLA Class I susceptibility to LADA was indicative of a less deleterious immunogenetic nature compared with classic T1D. These autoimmune diabetes-related Class I variants might serve as additional markers in future screening among Chinese people.
Collapse
Affiliation(s)
- Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jian Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiying Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
6
|
James S, Maniam J, Cheung PT, Urakami T, von Oettingen J, Likitmaskul S, Ogle G. Epidemiology and phenotypes of diabetes in children and adolescents in non-European-origin populations in or from Western Pacific region. World J Clin Pediatr 2022; 11:173-195. [PMID: 35433305 PMCID: PMC8985498 DOI: 10.5409/wjcp.v11.i2.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/09/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) incidence varies substantially between countries/ territories, with most studies indicating increasing incidence. In Western Pacific region (WPR), reported rates are much lower than European-origin populations. In contrast, there are reports of substantial numbers of young people with type 2 diabetes (T2D). A deeper understanding of T1D and T2D in the WPR may illuminate factors important in pathogenesis of these conditions. Furthermore, with varying resources and funding for diabetes treatment in this region, there is a need to more clearly determine the current burden of disease and also any gaps in knowledge. AIM To compile and summarise published epidemiologic and phenotypic data on childhood diabetes in non-European populations in and from WPR. METHODS Research articles were systematically searched from PubMed (MEDLINE), Embase, Cochrane library, and gray literature. Primary outcome measures were incidence and prevalence, with secondary measures including phenotypic descriptions of diabetes, including diabetes type categorization, presence of diabetic ketoacidosis (DKA) at onset, autoantibody positivity, C-peptide levels, and human leucocyte antigen phenotype. Extracted data were collected using a customized template. Three hundred and thirty relevant records were identified from 16 countries/territories, with analysis conducted on 265 (80.3%) records published from the year 2000. RESULTS T1D incidence ranged from < 1-7.3/100000 individuals/year, rates were highest in emigrant/ mixed populations and lowest in South-East Asia, with most countries/territories (71.4%) having no data since 1999. Incidence was increasing in all six countries/territories with data (annual increases 0.5%-14.2%, highest in China). Peak age-of-onset was 10-14 years, with a female case excess. Rate of DKA at onset varied from 19.3%-70%. Pancreatic autoantibodies at diagnosis were similar to European-origin populations, with glutamic acid decarboxylase-65 autoantibody frequency of 44.1%-64.5%, insulinoma-associated 2 autoantibody 43.5%-70.7%, and zinc transporter-8 autoantibody frequency 54.3% (one study). Fulminant T1D also occurs. T2D was not uncommon, with incidence in Japan and one Chinese study exceeding T1D rates. Monogenic forms also occurred in a number of countries. CONCLUSION T1D is less common, but generally has a classic phenotype. Some countries/ territories have rapidly increasing incidence. T2D is relatively common. Registries and studies are needed to fill many information gaps.
Collapse
Affiliation(s)
- Steven James
- School of Nursing, Midwifery and Paramedicine, University of the Sunshine Coast, Petrie 4502, Queensland, Australia
| | - Jayanthi Maniam
- Life for a Child Program, Diabetes NSW & ACT, Glebe 2017, New South Wales, Australia
| | - Pik-To Cheung
- Department of Paediatric Endocrinology, Genetics and Metabolism, Virtus Medical Group, Hong Kong, China
| | - Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Julia von Oettingen
- Research Institute, McGill University Health Centre, Montreal H4A 3JI, Quebec, Canada
| | - Supawadee Likitmaskul
- Siriraj Diabetes Center, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Graham Ogle
- Life for a Child Program, Diabetes NSW & ACT, Glebe 2017, New South Wales, Australia
| |
Collapse
|
7
|
Shih WL, Tung YC, Chang LY, Fang CT, Tsai WY. Increased Incidence of Pediatric Type 1 Diabetes With Novel Association With Coxsackievirus A Species in Young Children but Declined Incidence in Adolescents in Taiwan. Diabetes Care 2021; 44:1579-1585. [PMID: 34083323 PMCID: PMC8323190 DOI: 10.2337/dc20-1092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/24/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 1 diabetes (T1D) has been linked to enterovirus infection in small population-based epidemiological studies. We investigated the secular relationship of T1D incidence with enterovirus infection and enterovirus species using nationwide population-based analysis. RESEARCH DESIGN AND METHODS We accessed the National Health Insurance Research Database of Taiwan to identify T1D and enterovirus infection cases from 2001 to 2015. Enterovirus serotype isolation rates were obtained from the nationwide laboratory surveillance systems. Negative binomial regression models assessed the incidence trend, and extended Cox proportional hazards models analyzed the association of enterovirus infection with T1D incidence. Spearman correlation coefficients evaluated the correlation between T1D incidence and circulating enterovirus species. RESULTS T1D incidence rates in youth younger than 20 years were 6.30 and 5.02 per 100,000 person-years in 2001 and 2015 (P = 0.287), respectively. T1D incidence increased significantly in children aged 0-6 years (P < 0.001) but decreased in adolescents aged 13-19 years (P = 0.011). The T1D risk in children aged 0-6 years with enterovirus infection was significantly higher than that in noninfected subjects (hazard ratio 1.46; 95% CI 1.35-1.58; P < 0.001). Additionally, TID incidence in children aged 0-6 years was significantly correlated with the isolation rates of coxsackievirus A species (r = 0.60; P = 0.017), but no association was found beyond the age of 7. CONCLUSIONS We demonstrated that T1D incidence increased in children aged 0-6 years but decreased in adolescents aged 13-19 years in Taiwan. Enterovirus-infected subjects younger than 7 years had a higher risk of T1D than noninfected subjects.
Collapse
Affiliation(s)
- Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, Taiwan
| | - Yi-Ching Tung
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Luan-Yin Chang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan .,Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Tsai
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Xia Y, Li X, Huang G, Lin J, Luo S, Xie Z, Zhou Z. The association of HLA-DP loci with autoimmune diabetes in Chinese. Diabetes Res Clin Pract 2021; 173:108582. [PMID: 33307130 DOI: 10.1016/j.diabres.2020.108582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
AIMS To determine if HLA-DP loci independently contribute to classic type 1 diabetes (T1D) of all ages, childhood-onset T1D and latent autoimmune diabetes in adults (LADA) among Chinese Han population. METHODS A total of 518 patients with classic T1D (Among them 180 participants manifested T1D between 1 and 14 years), 519 patients with LADA and 527 normal controls were genotyped for both HLA-DPA1 and -DPB1 loci. The frequencies of DP alleles and haplotypes in patients were directly compared to those in controls, followed by adjustment for linkage disequilibrium (LD) with DR-DQ haplotypes. RESULTS In the direct comparison, DPA1*01:03, DPB1*04:01 and DPA1*01:03-DPB1*04:01 showed disease-predisposing effects in both the overall T1D group and the childhood-onset T1D group mainly due to their conjunction with the known susceptible DR3 haplotype. Conditioning on DR-DQ haplotypes, only DPA1*02:02-DPB1*02:02 significantly increased T1D risk among those diagnosed during childhood (OR = 2.02, 95% CI = 1.35-3.01). Whether or not adjusted for LD, no statistically significant HLA-DP association could be observed for LADA. CONCLUSION HLA-DP is implicated in the pathogenesis of childhood-onset T1D in Chinese, independent of the predominant DR-DQ loci and might serve as additional markers in genetic models for the recognition of those genetically at-risk individuals.
Collapse
Affiliation(s)
- Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jian Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|