1
|
Yap S, Gasperini S, Matsumoto S, Feillet F. Role of carglumic acid in the long-term management of propionic and methylmalonic acidurias. Orphanet J Rare Dis 2024; 19:464. [PMID: 39695809 DOI: 10.1186/s13023-024-03468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Propionic aciduria (PA) and methylmalonic aciduria (MMA) are rare inherited disorders caused by defects in the propionate metabolic pathway. PA due to propionyl coenzyme A carboxylase deficiency results in accumulation of propionic acid, while in MMA, deficiency in methylmalonyl coenzyme A mutase leads to accumulation of methylmalonic acid. Hyperammonemia is related to a secondary deficiency of N-acetylglutamate (NAG), the activator of carbamoyl phosphate synthetase 1, which is an irreversible rate-limiting enzyme in the urea cycle. Carglumic acid (CGA) is a synthetic structural analog of human NAG and is approved for the treatment of patients with hyperammonemia due to PA or MMA. CGA is well tolerated and its use in normalizing ammonia levels during acute hyperammonemic episodes in patients with PA and MMA is well established. This expert opinion analyzed clinical evidence for CGA and discussed its place, along with other management strategies, in the long-term management of PA or MMA. A literature search of PubMed was undertaken to identify publications related to the chronic use of CGA, transplantation, dietary management, ammonia scavengers, and gene therapy for treatment of patients with PA or MMA. The authors selected the most relevant studies for inclusion. Four clinical studies, one single center case series, and three case reports show that CGA is safe and effective in the chronic treatment of PA and MMA. In particular, the addition of CGA is associated with a reduction in hyperammonemic decompensation episodes and admission to hospital, compared with conventional dietary treatment alone. Current treatment guidelines and recommendations include the use of CGA mainly in acute decompensation, however, lag in considering the benefits of long-term CGA treatment on clinical and biochemical outcomes in patients with PA or MMA. CGA is safe and effective in the chronic treatment of PA and MMA and may help to resolve some of the issues associated with other strategies used to treat these disorders. Thus, CGA appears to have potential for the chronic management of patients with PA and MMA and should be recommended for inclusion in the chronic treatment of these disorders.
Collapse
Affiliation(s)
- Sufin Yap
- Department of Inherited Metabolic Diseases, Sheffield Children's Hospital, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, S10 2TH, UK.
| | - Serena Gasperini
- Metabolic Rare Disease Unit "Fondazione Mariani", Pediatric Department, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Shirou Matsumoto
- Department of Neonatology, Kumamoto University, Honjo 1-1-1, Chu-oh-ku, Kumamoto, Japan
| | - François Feillet
- Pediatric Unit, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| |
Collapse
|
2
|
Pintus G, Vitturi N, Carraro G, Lenzini L, Gugelmo G, Fasan I, Madinelli A, Burlina A, Avogaro A, Calò LA. Renal Replacement Therapy in Methylmalonic Aciduria-Related Metabolic Failure: Case Report and Literature Review. J Clin Med 2024; 13:4304. [PMID: 39124570 PMCID: PMC11313451 DOI: 10.3390/jcm13154304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Methylmalonic Aciduria (MA) without homocystinuria (or isolated MA) is a group of rare inherited metabolic disorders which leads to the accumulation of methylmalonic acid (MMA), a toxic molecule that accumulates in blood, urine, and cerebrospinal fluid, causing acute and chronic complications including metabolic crises, acute kidney injury (AKI), and chronic kidney disease (CKD). Detailed Case Description: Herein, we report a case of a 39-year-old male with MA and stage IV CKD who experienced acute metabolic decompensation secondary to gastrointestinal infection. The patient underwent a single hemodialysis (HD) session to correct severe metabolic acidosis unresponsive to medical therapy and to rapidly remove MMA. The HD session resulted in prompt clinical improvement and shortening of hospitalization. DISCUSSION MMA accumulation in MA patients causes acute and life-threatening complications, such as metabolic decompensations, and long-term complications such as CKD, eventually leading to renal replacement therapy (RRT). Data reported in the literature show that, overall, all dialytic treatments (intermittent HD, continuous HD, peritoneal dialysis) are effective in MMA removal. HD, in particular, can be useful in the emergency setting to control metabolic crises, even with GFR > 15 mL/min. Kidney and/or liver transplantations are often needed in MA patients. While a solitary transplanted kidney can be rapidly affected by MMA exposure, with a decline in renal function even in the first year of follow-up, the combined liver-kidney transplantation showed better long-term results due to a combination of reduced MMA production along with increased urinary excretion. CONCLUSIONS Early diagnosis, multidisciplinary management and preventive measures are pivotal in MA patients to avoid recurrent AKI episodes and, consequently, to slow down CKD progression.
Collapse
Affiliation(s)
- Giovanni Pintus
- Hypertension Unit, Department of Medicine—DIMED, Padova University Hospital, University of Padova, 35128 Padua, Italy; (G.P.); (L.L.)
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy; (N.V.); (G.G.); (A.M.); (A.A.)
| | - Gianni Carraro
- Nephrology, Dialysis and Transplant Unit, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy;
| | - Livia Lenzini
- Hypertension Unit, Department of Medicine—DIMED, Padova University Hospital, University of Padova, 35128 Padua, Italy; (G.P.); (L.L.)
| | - Giorgia Gugelmo
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy; (N.V.); (G.G.); (A.M.); (A.A.)
| | - Ilaria Fasan
- Division of Clinical Nutrition, Department of Medicine—DIMED, Padova University Hospital, University of Padova, 35128 Padua, Italy;
| | - Alberto Madinelli
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy; (N.V.); (G.G.); (A.M.); (A.A.)
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Women’s and Children’s Health, Padova University Hospital, University of Padova, 35128 Padua, Italy;
| | - Angelo Avogaro
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy; (N.V.); (G.G.); (A.M.); (A.A.)
| | - Lorenzo Arcangelo Calò
- Nephrology, Dialysis and Transplant Unit, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy;
| |
Collapse
|
3
|
Costanzo M, Cevenini A, Kollipara L, Caterino M, Bianco S, Pirozzi F, Scerra G, D'Agostino M, Pavone LM, Sickmann A, Ruoppolo M. Methylmalonic acidemia triggers lysosomal-autophagy dysfunctions. Cell Biosci 2024; 14:63. [PMID: 38760822 PMCID: PMC11102240 DOI: 10.1186/s13578-024-01245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is a rare inborn error of propionate metabolism caused by deficiency of the mitochondrial methylmalonyl-CoA mutase (MUT) enzyme. As matter of fact, MMA patients manifest impairment of the primary metabolic network with profound damages that involve several cell components, many of which have not been discovered yet. We employed cellular models and patients-derived fibroblasts to refine and uncover new pathologic mechanisms connected with MUT deficiency through the combination of multi-proteomics and bioinformatics approaches. RESULTS Our data show that MUT deficiency is connected with profound proteome dysregulations, revealing molecular actors involved in lysosome and autophagy functioning. To elucidate the effects of defective MUT on lysosomal and autophagy regulation, we analyzed the morphology and functionality of MMA-lysosomes that showed deep alterations, thus corroborating omics data. Lysosomes of MMA cells present as enlarged vacuoles with low degradative capabilities. Notwithstanding, treatment with an anti-propionigenic drug is capable of totally rescuing lysosomal morphology and functional activity in MUT-deficient cells. These results indicate a strict connection between MUT deficiency and lysosomal-autophagy dysfunction, providing promising therapeutic perspectives for MMA. CONCLUSIONS Defective homeostatic mechanisms in the regulation of autophagy and lysosome functions have been demonstrated in MUT-deficient cells. Our data prove that MMA triggers such dysfunctions impacting on autophagosome-lysosome fusion and lysosomal activity.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy.
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Armando Cevenini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | | | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Sabrina Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Francesca Pirozzi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy.
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| |
Collapse
|
4
|
George RP, Winterberg PD, Garro R. Multidisciplinary and multidimensional approaches to transplantation in children with rare genetic kidney diseases. Pediatr Transplant 2023; 27:e14567. [PMID: 37522570 DOI: 10.1111/petr.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 08/01/2023]
Abstract
In this review, we describe the multidisciplinary, multidimensional care required to optimize outcomes for pediatric transplant recipients with rare genetic kidney diseases. Transplant success, recipient survival, and improvement in quality of life depend on collaboration between patients, families, and a team of specialists with medical, as well as nonmedical expertise. A multidisciplinary transplant team composed of experts from medicine, surgery, nursing, nutrition, social services, transplant coordination, psychology, and pharmacology, is now standard in most transplant centers and is critical to the success of a transplant. In addition to these professionals, other specialists, such as cardiologists, urologists, geneticists, metabolic disease specialists, occupational therapists, case management, child life, chaplain, and palliative care services, have a crucial role to play in the preparation, surgery, and follow-up care, especially when a pediatric patient has a rare genetic disorder leading to renal involvement, and the need for transplantation. In order to describe this multidisciplinary care, we divide the genetic renal diseases into five subgroups-metabolic and tubular disorders, glomerular diseases, congenital anomalies of the kidney and urinary tract, ciliopathies including cystic diseases, and miscellaneous renal conditions; and describe for each, the need for care beyond that provided by the standard transplant team members.
Collapse
Affiliation(s)
- Roshan P George
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Pamela D Winterberg
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Rouba Garro
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Sen K, Burrage LC, Chapman KA, Ginevic I, Mazariegos GV, Graham BH. Solid organ transplantation in methylmalonic acidemia and propionic acidemia: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100337. [PMID: 36534118 DOI: 10.1016/j.gim.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George V Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | -
- American College of Medical Genetics and Genomics, Bethesda, MD
| |
Collapse
|
6
|
Schumann S, Rommel FR, Cantez S, Alexanidou E, Kamrath C, de Laffolie J. Postpyloric nutrition to prevent emergencies - a step away from repeat inpatient care in children with methylmalonic acidaemia and propionic acidaemia - a case report of four cases. Front Pediatr 2023; 11:1078425. [PMID: 36814590 PMCID: PMC9939511 DOI: 10.3389/fped.2023.1078425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are very rare autosomal recessive inherited metabolic diseases from the group of organoacidopathies. Katabolism due to minor infections can lead to metabolic decompensation including hyperammonemia and ketoacidosis, especially in small children. We present data from a small cohort to clarify whether placement of a percutaneous endoscopic gastrostomy with jejunal tube (J-PEG) reduce metabolic imbalances and hospital stays. The aim is to prevent emergencies from occurring by preventing metabolic derailments at an early stage. 4 patients with MMA (N = 3) or PA (N = 1) were included. Data were collected at every investigation, in particular pH value, pCO2, bicarbonate, base excess, ammonia and lactate. Due to repeated metabolic derailments, a percutaneous endoscopic gastrostomy was placed for postpyloric nutrition. In conclusion, placement of a percutaneous endoscopic gastrostomy with postpyloric tube appears to reduce the rate of metabolic decompensations. In addition, hospital stays and especially the number of treatment days can be reduced. This method, especially the placement of a postpyloric tube could enable parents to prevent catabolism when vomiting begins by continuously feeding through the jejunal part, as a step to prevent a metabolic emergency from occurring.
Collapse
Affiliation(s)
- Stefan Schumann
- Department of General Pediatrics and Neonatology, University of Giessen, Giessen, Germany
| | - Frank Risto Rommel
- Department of General Pediatrics and Neonatology, University of Giessen, Giessen, Germany
| | - Serdar Cantez
- Department of General Pediatrics and Neonatology, University of Giessen, Giessen, Germany
| | - Evdokia Alexanidou
- Department of General Pediatrics and Neonatology, University of Giessen, Giessen, Germany
| | - Clemens Kamrath
- Department of General Pediatrics and Neonatology, University of Giessen, Giessen, Germany
| | - Jan de Laffolie
- Department of General Pediatrics and Neonatology, University of Giessen, Giessen, Germany
| |
Collapse
|
7
|
Longo N, Sass JO, Jurecka A, Vockley J. Biomarkers for drug development in propionic and methylmalonic acidemias. J Inherit Metab Dis 2022; 45:132-143. [PMID: 35038174 PMCID: PMC9303879 DOI: 10.1002/jimd.12478] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/13/2022]
Abstract
There is an unmet need for the development and validation of biomarkers and surrogate endpoints for clinical trials in propionic acidemia (PA) and methylmalonic acidemia (MMA). This review examines the pathophysiology and clinical consequences of PA and MMA that could form the basis for potential biomarkers and surrogate endpoints. Changes in primary metabolites such as methylcitric acid (MCA), MCA:citric acid ratio, oxidation of 13 C-propionate (exhaled 13 CO2 ), and propionylcarnitine (C3) have demonstrated clinical relevance in patients with PA or MMA. Methylmalonic acid, another primary metabolite, is a potential biomarker, but only in patients with MMA. Other potential biomarkers in patients with either PA and MMA include secondary metabolites, such as ammonium, or the mitochondrial disease marker, fibroblast growth factor 21. Additional research is needed to validate these biomarkers as surrogate endpoints, and to determine whether other metabolites or markers of organ damage could also be useful biomarkers for clinical trials of investigational drug treatments in patients with PA or MMA. This review examines the evidence supporting a variety of possible biomarkers for drug development in propionic and methylmalonic acidemias.
Collapse
Affiliation(s)
- Nicola Longo
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein‐Sieg University of Applied SciencesRheinbachGermany
| | | | - Jerry Vockley
- Division Medical Genetics, Department of PediatricsUniversity of Pittsburgh, School of Medicine, Center for Rare Disease Therapy, UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
8
|
Fernandez HE, Foster BJ. Long-Term Care of the Pediatric Kidney Transplant Recipient. Clin J Am Soc Nephrol 2022; 17:296-304. [PMID: 33980614 PMCID: PMC8823932 DOI: 10.2215/cjn.16891020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pediatric kidney transplant recipients are distinguished from adult recipients by the need for many decades of graft function, the potential effect of CKD on neurodevelopment, and the changing immune environment of a developing human. The entire life of an individual who receives a transplant as a child is colored by their status as a transplant recipient. Not only must these young recipients negotiate all of the usual challenges of emerging adulthood (transition from school to work, romantic relationships, achieving independence from parents), but they must learn to manage a life-threatening medical condition independently. Regardless of the age at transplantation, graft failure rates are higher during adolescence and young adulthood than at any other age. All pediatric transplant recipients must pass through this high-risk period. Factors contributing to the high graft failure rates in this period include poor adherence to treatment, potentially exacerbated by the transfer of care from pediatric- to adult-oriented care providers, and perhaps an increased potency of the immune response. We describe the characteristics of pediatric kidney transplant recipients, particularly those factors that may influence their care throughout their lives. We also discuss the risks associated with the transition from pediatric- to adult-oriented care and provide some suggestions to optimize the transition to adult-oriented transplant care and long-term outcomes.
Collapse
Affiliation(s)
- Hilda E. Fernandez
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Bethany J. Foster
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada,Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Menon J, Vij M, Sachan D, Rammohan A, Shanmugam N, Kaliamoorthy I, Rela M. Pediatric metabolic liver diseases: Evolving role of liver transplantation. World J Transplant 2021; 11:161-179. [PMID: 34164292 PMCID: PMC8218348 DOI: 10.5500/wjt.v11.i6.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic liver diseases (MLD) are the second most common indication for liver transplantation (LT) in children. This is based on the fact that the majority of enzymes involved in various metabolic pathways are present within the liver and LT can cure or at least control the disease manifestation. LT is also performed in metabolic disorders for end-stage liver disease, its sequelae including hepatocellular cancer. It is also performed for preventing metabolic crisis', arresting progression of neurological dysfunction with a potential to reverse symptoms in some cases and for preventing damage to end organs like kidneys as in the case of primary hyperoxalosis and methyl malonic acidemia. Pathological findings in explant liver with patients with metabolic disease include unremarkable liver to steatosis, cholestasis, inflammation, variable amount of fibrosis, and cirrhosis. The outcome of LT in metabolic disorders is excellent except for patients with mitochondrial disorders where significant extrahepatic involvement leads to poor outcomes and hence considered a contraindication for LT. A major advantage of LT is that in the post-operative period most patients can discontinue the special formula which they were having prior to the transplant and this increases their well-being and improves growth parameters. Auxiliary partial orthotopic LT has been described for patients with noncirrhotic MLD where a segmental graft is implanted in an orthotopic position after partial resection of the native liver. The retained native liver can be the potential target for future gene therapy when it becomes a clinical reality.
Collapse
Affiliation(s)
- Jagadeesh Menon
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Deepti Sachan
- Department of Transfusion Medicine, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Naresh Shanmugam
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| |
Collapse
|
10
|
Forny P, Hörster F, Ballhausen D, Chakrapani A, Chapman KA, Dionisi‐Vici C, Dixon M, Grünert SC, Grunewald S, Haliloglu G, Hochuli M, Honzik T, Karall D, Martinelli D, Molema F, Sass JO, Scholl‐Bürgi S, Tal G, Williams M, Huemer M, Baumgartner MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021; 44:566-592. [PMID: 33595124 PMCID: PMC8252715 DOI: 10.1002/jimd.12370] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ballhausen
- Paediatric Unit for Metabolic Diseases, Department of Woman‐Mother‐ChildUniversity Hospital LausanneLausanneSwitzerland
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Kimberly A. Chapman
- Rare Disease Institute, Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlo Dionisi‐Vici
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sarah C. Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre‐University of FreiburgFaculty of MedicineFreiburgGermany
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Pediatric NeurologyHacettepe University Children's HospitalAnkaraTurkey
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Daniela Karall
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jörn Oliver Sass
- Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein Sieg University of Applied SciencesRheinbachGermany
| | - Sabine Scholl‐Bürgi
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's HospitalRambam Health Care CampusHaifaIsrael
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
- Department of PaediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Jiang YZ, Zhou GP, Wu SS, Kong YY, Zhu ZJ, Sun LY. Safety and efficacy of liver transplantation for methylmalonic acidemia: A systematic review and meta-analysis. Transplant Rev (Orlando) 2021; 35:100592. [PMID: 33422927 DOI: 10.1016/j.trre.2020.100592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
Background-objectives: Liver transplantation (LT) and combined liver and kidney transplantation (CLKT) have been proposed as enzyme replacement therapies for methylmalonic aciduria (MMA). We aimed to synthesize the available evidence on their safety and efficacy. METHODS Medline, Embase and Cochrane library were searched to identify studies that reported post-LT/CLKT clinical outcomes of MMA from their inception to February 1, 2020. The pooled rate was calculated using random-effects model with Freeman-Tukey double arcsine transformation method. RESULTS Thirty-two studies involving 109 patients were included. The pooled estimate rates were 99.9% (95% CI 95.3-100.0) for patient survival, 98.5% (95% CI 91.5-100.0) for graft survival after LT/CLKT. The combined incidence of biliary, vascular complications and rejection were 0.2% (95% CI 0.0-6.6), 7.7% (95% CI 0.1-22.1) and 18.4% (95% CI 4.6-36.3), respectively. The pooled estimate rates were 100.0% (95% CI 99.4-100.0) for metabolic eradication, 61.5% (95% CI: 33.4-87.0) for normalization of kidney function. Chronic kidney disease (CKD) remission is more promising after CLKT (70.3% VS 37.6% in LT group). The pooled estimate rates for neurodevelopmental status improvement and protein intake liberalization were 52.0% (95% CI 2.8-98.8) and 36.3% (95% CI 6.3-71.7), respectively. CONCLUSIONS This first quantitative systematic review confirms favorable survival outcomes and partially improved disease-related complications in transplanted MMA patients, although some results should be interpreted with caution. Future studies with detailed description of long-term outcomes and consensus on neurodevelopmental evaluation method can help provide a more accurate picture.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.
| | - Shan-Shan Wu
- Clinical Epidemiology and EBM Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yuan-Yuan Kong
- Clinical Epidemiology and EBM Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Forny P, Grunewald S. An expanding spectrum of complications in isolated methylmalonic aciduria. JOURNAL OF MOTHER AND CHILD 2020; 24:9-13. [PMID: 33554499 PMCID: PMC8518095 DOI: 10.34763/jmotherandchild.20202402si.2014.000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Isolated methylmalonic acidurias represent a heterogeneous genetic group of inborn errors of propionate metabolism with the common biochemical hallmark of elevated methylmalonic acid present in tissues and body fluids. It was first described in the 1960s and over the years better understanding of the disease and its presentation, earlier diagnosis, and most importantly advances in treatment have resulted in extended survival of patients. With that an expanding spectrum of complications is emerging which requires attention and regular monitoring to facilitate early intervention and reduce disease burden.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism, University Children’s Hospital Zurich, Zurich, Switzerland,Metabolic Medicine Department, Great Ormond Street Hospital, Institute of Child Health University College London, NIHR Biomedical Center (BRC), London, UK
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital, Institute of Child Health University College London, NIHR Biomedical Center (BRC), London, UK, E-mail:
| |
Collapse
|
13
|
Strauss KA, Williams KB, Carson VJ, Poskitt L, Bowser LE, Young M, Robinson DL, Hendrickson C, Beiler K, Taylor CM, Haas-Givler B, Hailey J, Chopko S, Puffenberger EG, Brigatti KW, Miller F, Morton DH. Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Mol Genet Metab 2020; 131:325-340. [PMID: 33069577 DOI: 10.1016/j.ymgme.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kg•day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kg•day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diet therapy
- Amino Acid Metabolism, Inborn Errors/epidemiology
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Brain/metabolism
- Brain/pathology
- Brain Diseases, Metabolic/diet therapy
- Brain Diseases, Metabolic/epidemiology
- Brain Diseases, Metabolic/genetics
- Brain Diseases, Metabolic/metabolism
- Carnitine/metabolism
- Child
- Child, Preschool
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Diet
- Female
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Humans
- Infant
- Infant, Newborn
- Lysine/metabolism
- Male
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA.
| | | | - Vincent J Carson
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | - Laura Poskitt
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | | | | | | | | | | | - Cora M Taylor
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | - Stephanie Chopko
- Department of Pediatrics, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | | | | | - Freeman Miller
- Department of Orthopedic Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - D Holmes Morton
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Central Pennsylvania Clinic, Belleville, PA, USA
| |
Collapse
|
14
|
Siegel C, Arnon R, Florman S, Bucuvalas J, Oishi K. Nutritional Management and Biochemical Outcomes during the Immediate Phase after Liver Transplant for Methylmalonic Acidemia. Nutrients 2020; 12:nu12102976. [PMID: 33003354 PMCID: PMC7599551 DOI: 10.3390/nu12102976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022] Open
Abstract
Methylmalonic acidemia (MMA) is caused by a deficiency of methyl-malonyl-CoA mutase. It is a multisystemic condition with poor clinical outcomes characterized by frequent metabolic decompensation with acidosis, hyperammonemia and encephalopathy. Restriction of intact protein and supplementation with amino acid-based formula play an important role in its management. Recently, liver transplant (LT) became a treatment option for MMA patients. However, there has been no current consensus on the post-operative nutrition management for MMA patients undergoing transplant, particularly during the initial phase of recovery period with catabolic stressors. We performed a retrospective analysis of clinical and nutritional management as well as biochemical profiles before and after LT in five patients with MMA. Through this study, we observed significant improvement of MMA-associated metabolites after LT. MMA patients were able to tolerate increased intact protein intake post-operatively. At least 1–1.5 g/kg/day of total protein during the acute phase after transplant may be tolerated without worsening of the metabolite levels. This information provides a guide in how to nutritionally manage MMA after LT.
Collapse
Affiliation(s)
- Casey Siegel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ronen Arnon
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.A.); (J.B.)
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Sander Florman
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - John Bucuvalas
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.A.); (J.B.)
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.A.); (J.B.)
- Correspondence: ; Tel.: +1-212-241-6947
| |
Collapse
|