1
|
Yao G, Liu Z, Liu H, Jiang C, Li Y, Liu J, He J. Air disinfection performance of upper-room ultraviolet germicidal irradiation (UR-UVGI) system in a multi-compartment dental clinic. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135383. [PMID: 39094316 DOI: 10.1016/j.jhazmat.2024.135383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Multi-compartment dental clinics present significant airborne cross-infection risks. Upper-room ultraviolet germicidal irradiation (UR-UVGI) system have shown promise in preventing airborne pathogens, but its available application data are insufficient in multi-compartment dental clinics. Therefore, the UR-UVGI system's performance in a multi-compartment dental clinic was comprehensively evaluated in this study. The accuracy of the turbulence and drift flux models was verified by experimental data from ultrasonic scaling. The effects of the ventilation rate, irradiation zone volume, and irradiation flux on UR-UVGI performance were analyzed using computational fluid dynamics coupled with a UV inactivation model. Different patient numbers were considered. The results showed that UR-UVGI significantly reduced virus concentrations and outperformed increased ventilation rates alone. At a ventilation rate of six air changes per hour (ACH), UR-UVGI with an irradiation zone volume of 20% and irradiation flux of 5 μW/cm2 achieved a 70.44% average virus reduction in the whole room (WR), outperforming the impact of doubling the ventilation rate from 6 to 12 ACH without UR-UVGI. The highest disinfection efficiency of UR-UVGI decreased for WRs with more patients. The compartment treating patients exhibited significantly lower disinfection efficiency than others. Moreover, optimal UR-UVGI performance occurs at lower ventilation rates, achieving over 80% virus disinfection in WR. Additionally, exceeding an irradiation zone volume of 20% or an irradiation flux of 5 μW/cm2 notably reduces the improvement rates of UR-UVGI performance. These findings provide a scientific reference for strategically applying UR-UVGI in multi-compartment dental clinics.
Collapse
Affiliation(s)
- Guangpeng Yao
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, PR China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, PR China.
| | - Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, PR China
| | - Chuan Jiang
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, PR China
| | - Yabin Li
- The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Jia Liu
- The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, PR China.
| |
Collapse
|
2
|
van der Schans M, Yu J, de Vries A, Martin G. Estimation of the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm irradiation using CFD-based room disinfection simulations. Sci Rep 2024; 14:15963. [PMID: 38987323 PMCID: PMC11237116 DOI: 10.1038/s41598-024-63472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
The recent COVID-19 pandemic has raised interest in efficient air disinfection solutions. The application of germicidal ultraviolet (GUV) irradiation is an excellent contender to prevent airborne transmission of COVID-19, as well as other existing and future infectious airborne diseases. While GUV has already been proven effective in inactivating SARS-CoV-2, quantitative data on UV susceptibility and dose requirements, needed to predict and optimize the performance of GUV solutions, is still limited. In this study, the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm ultraviolet (UV) irradiation is investigated. This is done by employing 3D computational fluid dynamics based simulations of SARS-CoV-2 inactivation in a test chamber equipped with an upper-room UV-C luminaire and comparing the results to previously published measurements performed in the same test chamber. The UV susceptibility found in this study is (0.6 ± 0.2) m2/J, which is equivalent to a D90 dose between 3 and 6 J/m2. These values are in the same range as previous estimations based on other corona viruses and inactivation data reported in literature.
Collapse
Affiliation(s)
| | - Joan Yu
- Signify, High Tech Campus 7, 5656AE, Eindhoven, The Netherlands
| | - Adrie de Vries
- Signify, High Tech Campus 7, 5656AE, Eindhoven, The Netherlands
| | | |
Collapse
|
3
|
Liu H, Liu Z, He J, Hu C, Rong R, Han H, Wang L, Wang D. Reducing airborne transmission of SARS-CoV-2 by an upper-room ultraviolet germicidal irradiation system in a hospital isolation environment. ENVIRONMENTAL RESEARCH 2023; 237:116952. [PMID: 37619635 DOI: 10.1016/j.envres.2023.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Upper-room ultraviolet germicidal irradiation (UVGI) technology can potentially inhibit the transmission of airborne disease pathogens. There is a lack of quantitative evaluation of the performance of the upper-room UVGI for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) airborne transmission under the combined effects of ventilation and UV irradiation. Therefore, this study aimed to explore the performance of the upper-room UVGI system for reducing SARS-CoV-2 virus transmission in a hospital isolation environment. Computational fluid dynamics and virological data on SARS-CoV-2 were integrated to obtain virus aerosol exposure in the hospital isolation environment containing buffer rooms, wards and bathrooms. The UV inactivation model was applied to investigate the effects of ventilation rate, irradiation flux and irradiation height on the upper-room UVGI performance. The results showed that increasing ventilation rate from 8 to 16 air changes per hour (ACH) without UVGI obtained 54.32% and 45.63% virus reduction in the wards and bathrooms, respectively. However, the upper-room UVGI could achieve 90.43% and 99.09% virus disinfection, respectively, with the ventilation rate of 8 ACH and the irradiation flux of 10 μW cm-2. Higher percentage of virus could be inactivated by the upper-room UVGI at a lower ventilation rate; the rate of improvement of UVGI elimination effect slowed down with the increase of irradiation flux. Increase irradiation height at lower ventilation rate was more effective in improving the UVGI performance than the increase in irradiation flux at smaller irradiation height. These results could provide theoretical support for the practical application of UVGI in hospital isolation environments.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China.
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Chenxing Hu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Rong
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Hao Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China.
| | - Lingyun Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Desheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| |
Collapse
|
4
|
Park S, Mistrick R, Sitzabee W, Rim D. Effect of ventilation strategy on performance of upper-room ultraviolet germicidal irradiation (UVGI) system in a learning environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165454. [PMID: 37467991 DOI: 10.1016/j.scitotenv.2023.165454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Upper-room ultraviolet germicidal irradiation (UVGI) system is recently in the limelight as a potentially effective method to mitigate the risk of airborne virus infection in indoor environments. However, few studies quantitatively evaluated the relationship between ventilation effectiveness and virus disinfection performance of a UVGI system. The objective of this study is to investigate the effects of ventilation strategy on detailed airflow distributions and UVGI disinfection performance in an occupied classroom. Three-dimensional computational fluid dynamics (CFD) simulations were performed for representative cooling, heating, and ventilation scenarios. The results show that when the ventilation rate is 1.1 h-1 (the minimum ventilation rate based on ASHRAE 62.1), enhancing indoor air circulation with the mixing fan notably improves the UVGI disinfection performance, especially for cooling with displacement ventilation and all-air-heating conditions. However, increasing indoor air mixing yields negligible effect on the disinfection performance for forced-convection cooling condition. The results also reveal that regardless of indoor thermal condition, disinfection effectiveness of a UVGI system increases as ventilation effectiveness is close to unity. Moreover, when the room average air speed is >0.1 m/s, upper-room UVGI system could yield about 90% disinfection effect for the aerosol size of 1 μm-10 μm. The findings of this study imply that upper-room UVGI systems in indoor environments (i.e., classrooms, hospitals) should be designed considering ventilation strategy and occupancy conditions, especially for occupied buildings with insufficient air mixing throughout the space.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Architectural Engineering, Pennsylvania State University, United States of America.
| | - Richard Mistrick
- Architectural Engineering Department, Pennsylvania State University, 104 Engineering Unit A, University Park, PA 16802, United States of America.
| | - William Sitzabee
- Pennsylvania State University, 201 Physical Plant Building, University Park, PA 16802, United States of America.
| | - Donghyun Rim
- Architectural Engineering Department, Pennsylvania State University, 222 Engineering Unit A, University Park, PA 16802, United States of America.
| |
Collapse
|
5
|
Zhu S, Lin T, Wang L, Nardell EA, Vincent RL, Srebric J. Ceiling impact on air disinfection performance of Upper-Room Germicidal Ultraviolet (UR-GUV). BUILDING AND ENVIRONMENT 2022; 224:109530. [PMID: 36065253 PMCID: PMC9429126 DOI: 10.1016/j.buildenv.2022.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
This study used Computational Fluid Dynamics (CFD) to investigate air disinfection for SARS-CoV-2 by the Upper-Room Germicidal Ultraviolet (UR-GUV), with focus on ceiling impact. The study includes three indoor settings, i.e., low (airport bus), medium (classroom) and high (rehearsal room) ceilings, which were ventilated with 100% clean air (CA case), 80% air-recirculation with a low filtration (LF case), and 80% air-recirculation with a high filtration (HF case). According to the results, using UR-GUV can offset the increased infection risk caused by air recirculation, with viral concentrations in near field (NF) and far field (FF) in the LF case similar to those in the CA case. In the CA case, fraction remaining (FR) was 0.48-0.73 with 25% occupancy rate (OR) and 0.49-0.91 with 45% OR in the bus, 0.41 in NF and 0.11 in FF in the classroom, and 0.18 in NF and 0.09 in FF in the rehearsal room. Obviously, UR-GUV performance in NF can be improved in a room with a high ceiling where FR has a power relationship with UV zone height. As using UR-GUV can only extend the exposure time to get infection risk of 1% (T 1% ) to 8 min in NF in the classroom, and 47 min in NF in the rehearsal room, it is necessary to abide by social distancing in the two rooms. In addition, T 1% in FF was calculated to be 18.3 min with 25% OR and 21.4% with 45% OR in the airport bus, showing the necessity to further wear a mask.
Collapse
Affiliation(s)
- Shengwei Zhu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Tong Lin
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Lingzhe Wang
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Edward A Nardell
- Departments of Environmental Health and Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Jelena Srebric
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
6
|
Ghaddar N, Ghali K. Ten questions concerning the paradox of minimizing airborne transmission of infectious aerosols in densely occupied spaces via sustainable ventilation and other strategies in hot and humid climates. BUILDING AND ENVIRONMENT 2022; 214:108901. [PMID: 35197667 PMCID: PMC8853966 DOI: 10.1016/j.buildenv.2022.108901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 05/14/2023]
Abstract
Airborne disease transmission in indoor spaces and resulting cross-contamination has been a topic of broad concern for years - especially recently with the outbreak of COVID-19. Global recommendations on this matter consist of increasing the outdoor air supply in the aim of diluting the indoor air. Nonetheless, a paradoxical relationship has risen between increasing amount of outdoor air and its impact on increased energy consumption - especially densely occupied spaces. The paradox is more critical in hot and humid climates, where large amounts of energy are required for the conditioning of the outdoor air. Therefore, many literature studies investigated new strategies for the mitigation of cross-contamination with little-to-no additional cost of energy. These strategies mainly consist of the dilution and/or the capture and removal of contaminants at the levels of macroenvironment room air and occupant-adjacent microenvironment. On the macroenvironment level, the dilution occurs by the supply of large amounts of outdoor air in a sustainable way using passive cooling systems, and the removal of contaminants happens via filtering. Similarly, the microenvironment of the occupant can be diluted using localized ventilation techniques, and contaminants can be captured and removed by direct exhaust near the source of contamination. Thus, this work answers ten questions that explore the most prevailing technologies from the above-mentioned fronts that are used to mitigate cross-contamination in densely occupied spaces located in hot and humid climates at minimal energy consumption. The paper establishes a basis for future work and insights for new research directives for macro and microenvironment approaches.
Collapse
Affiliation(s)
- Nesreen Ghaddar
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon
| | - Kamel Ghali
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon
| |
Collapse
|
7
|
Sarcia SR. Capacity Models and Transmission Risk Mitigation: An Engineering Framework to Predict the Effect of Air Disinfection by Germicidal Ultraviolet Radiation. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2022; 126:126057. [PMID: 39359736 PMCID: PMC11418604 DOI: 10.6028/jres.126.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 10/04/2024]
Abstract
A first-principles-based model for predicting the effect of germicidal radiation interventions for air disinfection is presented. Calculation of the "capacity" of an intervention expressed in volumetric flow rate allows for a direct comparison against fresh-air dilution ventilation and filtration systems, which are quantified in terms of the clean air provided. A closed-form expression to predict the combined quantitative impact of spatial gradients and mixing currents on the efficiency with which an intervention is applied is introduced. If validated, this would allow for systems to be selected and sized based on simple metrics across a broad range of settings and applications. The expressions developed are compared against available experimental data sets, and future validation efforts are proposed. Additionally, a method to identify an optimal operating capacity for a given setting by comparing costs associated with disease transmission against the cost of capacity is derived using the Wells-Riley equation and presented as an appendix.
Collapse
|
8
|
Beggs CB, Avital EJ. Upper-room ultraviolet air disinfection might help to reduce COVID-19 transmission in buildings: a feasibility study. PeerJ 2020; 8:e10196. [PMID: 33083158 PMCID: PMC7566754 DOI: 10.7717/peerj.10196] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
As the world's economies come out of the lockdown imposed by the COVID-19 pandemic, there is an urgent need for technologies to mitigate COVID-19 transmission in confined spaces such as buildings. This feasibility study looks at one such technology, upper-room ultraviolet (UV) air disinfection, that can be safely used while humans are present in the room space, and which has already proven its efficacy as an intervention to inhibit the transmission of airborne diseases such as measles and tuberculosis. Using published data from various sources, it is shown that the SARS-CoV-2 virus, the causative agent of COVID-19, is highly likely to be susceptible to UV-C damage when suspended in air, with a UV susceptibility constant likely to be in the region 0.377-0.590 m2/J, similar to that for other aerosolised coronaviruses. As such, the UV-C flux required to disinfect the virus is expected to be acceptable and safe for upper-room applications. Through analysis of expected and worst-case scenarios, the efficacy of the upper-room UV-C approach for reducing COVID-19 transmission in confined spaces (with moderate but sufficient ceiling height) is demonstrated. Furthermore, it is shown that with SARS-CoV-2, it should be possible to achieve high equivalent air change rates using upper-room UV air disinfection, suggesting that the technology might be particularly applicable to poorly ventilated spaces.
Collapse
Affiliation(s)
- Clive B. Beggs
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Eldad J. Avital
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Zhu S, Jenkins S, Addo K, Heidarinejad M, Romo SA, Layne A, Ehizibolo J, Dalgo D, Mattise NW, Hong F, Adenaiye OO, Bueno de Mesquita JP, Albert BJ, Washington-Lewis R, German J, Tai S, Youssefi S, Milton DK, Srebric J. Ventilation and laboratory confirmed acute respiratory infection (ARI) rates in college residence halls in College Park, Maryland. ENVIRONMENT INTERNATIONAL 2020; 137:105537. [PMID: 32028176 PMCID: PMC7112667 DOI: 10.1016/j.envint.2020.105537] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
Strategies to protect building occupants from the risk of acute respiratory infection (ARI) need to consider ventilation for its ability to dilute and remove indoor bioaerosols. Prior studies have described an association of increased self-reported colds and influenza-like symptoms with low ventilation but have not combined rigorous characterization of ventilation with assessment of laboratory confirmed infections. We report a study designed to fill this gap. We followed laboratory confirmed ARI rates and measured CO2 concentrations for four months during the winter-spring of 2018 in two campus residence halls: (1) a high ventilation building (HVB) with a dedicated outdoor air system that supplies 100% of outside air to each dormitory room, and (2) a low ventilation building (LVB) that relies on infiltration as ventilation. We enrolled 11 volunteers for a total of 522 person-days in the HVB and 109 volunteers for 6069 person-days in the LVB, and tested upper-respiratory swabs from symptomatic cases and their close contacts for the presence of 44 pathogens using a molecular assay. We observed one ARI case in the HVB (0.70/person-year) and 47 in the LVB (2.83/person-year). Simultaneously, 154 CO2 sensors distributed primarily in the dormitory rooms collected 668,390 useful data points from over 1 million recorded data points. Average and standard deviation of CO2 concentrations were 1230 ppm and 408 ppm in the HVB, and 1492 ppm and 837 ppm in the LVB, respectively. Importantly, this study developed and calibrated multi-zone models for the HVB with 229 zones and 983 airflow paths, and for the LVB with 529 zones and 1836 airflow paths by using a subset of CO2 data for model calibration. The models were used to calculate ventilation rates in the two buildings and potential for viral aerosol migration between rooms in the LVB. With doors and windows closed, the average ventilation rate was 12 L/s in the HVB dormitory rooms and 4 L/s in the LVB dormitory rooms. As a result, residents had on average 6.6 L/(s person) of outside air in the HVB and 2.3 L/(s person) in the LVB. LVB rooms located at the leeward side of the building had smaller average ventilation rates, as well as a somewhat higher ARI incidence rate and average CO2 concentrations when compared to those values in the rooms located at the windward side of the building. Average ventilation rates in twenty LVB dormitory rooms increased from 2.3 L/s to 7.5 L/s by opening windows, 3.6 L/s by opening doors, and 8.8 L/s by opening both windows and doors. Therefore, opening both windows and doors in the LVB dormitory rooms can increase ventilation rates to the levels comparable to those in the HVB. But it can also have a negative effect on thermal comfort due to low outdoor temperatures. Simulation results identified an aerobiologic pathway from a room occupied by an index case of influenza A to a room occupied by a possible secondary case.
Collapse
Affiliation(s)
- Shengwei Zhu
- University of Maryland, College Park, MD 20742, USA
| | - Sara Jenkins
- University of Maryland, College Park, MD 20742, USA
| | - Kofi Addo
- University of Maryland, College Park, MD 20742, USA
| | - Mohammad Heidarinejad
- University of Maryland, College Park, MD 20742, USA; Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | - Avery Layne
- University of Maryland, College Park, MD 20742, USA
| | | | - Daniel Dalgo
- University of Maryland, College Park, MD 20742, USA
| | | | - Filbert Hong
- University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | - Sheldon Tai
- University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
10
|
Nardell EA. Transmission and Institutional Infection Control of Tuberculosis. Cold Spring Harb Perspect Med 2015; 6:a018192. [PMID: 26292985 DOI: 10.1101/cshperspect.a018192] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tuberculosis (TB) transmission control in institutions is evolving with increased awareness of the rapid impact of treatment on transmission, the importance of the unsuspected, untreated case of transmission, and the advent of rapid molecular diagnostics. With active case finding based on cough surveillance and rapid drug susceptibility testing, in theory, it is possible to be reasonably sure that no patient enters a facility with undiagnosed TB or drug resistance. Droplet nuclei transmission of TB is reviewed with an emphasis on risk factors relevant to control. Among environmental controls, natural ventilation and upper-room ultraviolet germicidal ultraviolet air disinfection are the most cost-effective choices, although high-volume mechanical ventilation can also be used. Room air cleaners are generally not recommended. Maintenance is required for all engineering solutions. Finally, personal protection with fit-tested respirators is used in many situations where administrative and engineering methods cannot assure protection.
Collapse
Affiliation(s)
- Edward A Nardell
- Division of Global Health Equity, Brigham & Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
11
|
Linnes JC, Rudnick SN, Hunt GM, McDevitt JJ, Nardell EA. Eggcrate UV: a whole ceiling upper-room ultraviolet germicidal irradiation system for air disinfection in occupied rooms. INDOOR AIR 2014; 24:116-24. [PMID: 23889191 DOI: 10.1111/ina.12063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/20/2013] [Indexed: 06/02/2023]
Abstract
A novel whole ceiling upper-room ultraviolet germicidal irradiation (UVGI) system [eggcrate ultraviolet (UV)] has been developed that incorporates open-cell 'eggcrate'-suspended ceiling panels and bare UV lamps with a ceiling fan. Upper-room UVGI is more effective for air disinfection than mechanical ventilation at much lower installation and operating costs. Conventional upper-room UVGI fixtures employ multiple tightly spaced horizontal louvers to confine UV to the upper-room. These louvered fixtures protect occupants in the lower-room from UV-induced eye and skin irritation, but at a major cost to fixture efficiency. Using a lamp and ballast from a conventional upper-room UVGI fixture in the eggcrate UV system, the germicidal efficacy was markedly improved even though the UV radiation emitted by the lamp was unchanged. This fundamental change in the application of upper-room UVGI air disinfection should permit wider, more effective application of UVGI globally to reduce the spread of airborne infection.
Collapse
Affiliation(s)
- J C Linnes
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA; Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
12
|
Optimizing the protection of research participants and personnel in HIV-related research where TB is prevalent: practical solutions for improving infection control. J Acquir Immune Defic Syndr 2014; 65 Suppl 1:S19-23. [PMID: 24321979 DOI: 10.1097/qai.0000000000000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is a leading cause of death among persons with HIV globally. HIV-related research in TB endemic areas raises some unique and important ethical issues in infection control related to protecting both research participants and personnel. To address such concerns, this article provides practical guidance to help research teams develop strategies to prevent TB transmission in studies involving persons with HIV in TB endemic settings.
Collapse
|
13
|
ZHU SHENGWEI, SREBRIC JELENA, RUDNICK STEPHENN, VINCENT RICHARDL, NARDELL EDWARDA. Numerical Modeling of Indoor Environment with a Ceiling Fan and an Upper-Room Ultraviolet Germicidal Irradiation System. BUILDING AND ENVIRONMENT 2014; 72:116-124. [PMID: 24426180 PMCID: PMC3888502 DOI: 10.1016/j.buildenv.2013.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study proposes a numerical modeling method for the indoor environment with ceiling fans and upper-room ultraviolet germicidal irradiation (UR-UVGI) fixtures. The numerical modeling deployed steady-state Computational Fluid Dynamics (CFD) with a rotating reference frame to simulate the rotation of fan blades. CFD was validated with experimental data of velocity field and fraction of microorganism remaining at the exhaust diffuser. The fraction of microorganism remaining represented the ratio of the concentration of airborne microorganisms measured with UVGI turned on to the one measured with UVGI turned off. According to the validation results, the CFD model correctly reproduced the air movement induced by the rotation of ceiling fan. When the ambient ventilation rate was 2 ACH (air changes per hour) or 6 ACH, the CFD model accurately predicted the average vertical speeds in the section 2.44 m above the floor with the errors less than 10%, regardless of the ceiling fan's rotational direction or speed. In addition, the simulation results showed that the fraction of microorganism remaining increased with the ambient air exchange rate when the fan blew air downward with a rotational speed as high as 235 rpm, which corresponded with the experimental results. Furthermore, the simulation results accurately predicted the fraction of microorganism remaining when the ambient air exchange rate was 2 ACH. We conclude that this novel numerical model can reproduce the effects of ceiling fans and UR-UVGI fixtures on indoor environment, and should aid in the investigation of the impact of ceiling fans on UR-UVGI disinfection efficacy.
Collapse
Affiliation(s)
- SHENGWEI ZHU
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - JELENA SREBRIC
- Department of Architectural Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| | - STEPHEN N. RUDNICK
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - EDWARD A. NARDELL
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|