1
|
Borges-Rodríguez Y, Mata-Salgado F, Morales-Cueto R, Millan-Pacheco C, Muñoz-Garay C, Rivillas-Acevedo L. Role of human γD-crystallin tryptophans in the ultraviolet radiation response. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126197. [PMID: 40228334 DOI: 10.1016/j.saa.2025.126197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
Cataracts are the leading cause of reversible blindness worldwide, primarily associated with the aggregation of proteins such as γ-crystallins, which are essential for maintaining lens transparency. Among these, human γD-crystallin (HγD) contains four conserved tryptophans, hypothesized to act as a protective mechanism against ultraviolet (UV) radiation. This study investigated the effects of low-dose UV-B radiation on HγD and its variants, in which each tryptophan was replaced by phenylalanine. The substitutions did not significantly affect the protein's secondary or tertiary structure but markedly reduced thermal stability, particularly in the W42F mutant. Aggregation kinetics were accelerated in all variants, with pronounced increases observed in the W130F and W156F mutants. Molecular dynamics simulations revealed that these substitutions disrupt hydrophobic interactions in both the N- and C-terminal domains, promoting instability and enhancing aggregation propensity. UV radiation induced chemical modifications, where Trp42 and Trp130 were the most affected, further driving aggregation. Changes in fluorescence spectra after UV exposure indicated the breakdown of the tryptophan indole ring and the formation of degradation products. These results confirm that tryptophans in HγD serve a crucial protective role against UV-induced damage by preserving structural stability and minimizing aggregation.
Collapse
Affiliation(s)
- Yissell Borges-Rodríguez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Fernanda Mata-Salgado
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Rodrigo Morales-Cueto
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Cesar Millan-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Lina Rivillas-Acevedo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos C.P. 62209, Mexico.
| |
Collapse
|
2
|
Sun J, Morishima K, Inoue R, Sugiyama M, Takata T. Characterization of βB2-crystallin tryptophan mutants reveals two different folding states in solution. Protein Sci 2024; 33:e5092. [PMID: 38924206 PMCID: PMC11201810 DOI: 10.1002/pro.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Conserved tryptophan residues are critical for the structure and the stability of β/γ-crystallin in the lenses of vertebrates. During aging, in which the lenses are continuously exposed to ultraviolet irradiation and other environmental stresses, oxidation of tryptophan residues in β/γ-crystallin is triggered and impacts the lens proteins to varying degrees. Kynurenine derivatives, formed by oxidation of tryptophan, accumulate, resulting in destabilization and insolubilization of β/γ-crystallin, which correlates with age-related cataract formation. To understand the contribution of tryptophan modification on the structure and stability of human βB2-crystallin, five tryptophan residues were mutated to phenylalanine considering its similarity in structure and hydrophilicity to kynurenine. Among all mutants, W59F and W151F altered the stability and homo-oligomerization of βB2-crystallin-W59F promoted tetramerization whereas W151F blocked oligomerization. Most W59F dimers transformed into tetramer in a month, and the separated dimer and tetramer of W59F demonstrated different structures and hydrophobicity, implying that the biochemical properties of βB2-crystallin vary over time. By using SAXS, we found that the dimer of βB2-crystallin in solution resembled the lattice βB1-crystallin dimer (face-en-face), whereas the tetramer of βB2-crystallin in solution resembled its lattice tetramer (domain-swapped). Our results suggest that homo-oligomerization of βB2-crystallin includes potential inter-subunit reactions, such as dissociation, unfolding, and re-formation of the dimers into a tetramer in solution. The W>F mutants are useful in studying different folding states of βB2-crystallin in lens.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Takumi Takata
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| |
Collapse
|
3
|
Kipura T, Hotze M, Hofer A, Egger AS, Timpen LE, Opitz CA, Townsend PA, Gethings LA, Thedieck K, Kwiatkowski M. Automated Liquid Handling Extraction and Rapid Quantification of Underivatized Amino Acids and Tryptophan Metabolites from Human Serum and Plasma Using Dual-Column U(H)PLC-MRM-MS and Its Application to Prostate Cancer Study. Metabolites 2024; 14:370. [PMID: 39057693 PMCID: PMC11279291 DOI: 10.3390/metabo14070370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Amino acids (AAs) and their metabolites are important building blocks, energy sources, and signaling molecules associated with various pathological phenotypes. The quantification of AA and tryptophan (TRP) metabolites in human serum and plasma is therefore of great diagnostic interest. Therefore, robust, reproducible sample extraction and processing workflows as well as rapid, sensitive absolute quantification are required to identify candidate biomarkers and to improve screening methods. We developed a validated semi-automated robotic liquid extraction and processing workflow and a rapid method for absolute quantification of 20 free, underivatized AAs and six TRP metabolites using dual-column U(H)PLC-MRM-MS. The extraction and sample preparation workflow in a 96-well plate was optimized for robust, reproducible high sample throughput allowing for transfer of samples to the U(H)PLC autosampler directly without additional cleanup steps. The U(H)PLC-MRM-MS method, using a mixed-mode reversed-phase anion exchange column with formic acid and a high-strength silica reversed-phase column with difluoro-acetic acid as mobile phase additive, provided absolute quantification with nanomolar lower limits of quantification within 7.9 min. The semi-automated extraction workflow and dual-column U(H)PLC-MRM-MS method was applied to a human prostate cancer study and was shown to discriminate between treatment regimens and to identify metabolites responsible for discriminating between healthy controls and patients on active surveillance.
Collapse
Affiliation(s)
- Tobias Kipura
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexa Hofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Lea E. Timpen
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Christiane A. Opitz
- German Cancer Research Center (DKFZ), Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Paul A. Townsend
- Division of Cancer Sciences, Manchester Cancer Research Center, Manchester Academic Health Sciences Center, University of Manchester, Manchester M20 4GJ, UK
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lee A. Gethings
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
- Freiburg Materials Research Center (FMF), Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Hill JA, Nyathi Y, Horrell S, von Stetten D, Axford D, Owen RL, Beddard GS, Pearson AR, Ginn HM, Yorke BA. An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin. Commun Chem 2024; 7:81. [PMID: 38600176 PMCID: PMC11006947 DOI: 10.1038/s42004-024-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the structural basis of this longevity despite oxidative aging and environmental stressors including ultraviolet radiation (UV). Here we present crystallographic structures evidencing a UV-induced crystallin redox switch mechanism. The room-temperature serial synchrotron crystallographic (SSX) structure of freshly prepared crystallin mutant (R36S) shows no post-translational modifications. After aging for nine months in the absence of light, a thiol-adduct (dithiothreitol) modifying surface cysteines is observed by low-dose SSX. This is shown to be UV-labile in an acutely light-exposed structure. This suggests a mechanism by which a major source of crystallin damage, UV, may also act as a rescuing factor in a finely balanced redox system.
Collapse
Affiliation(s)
- Jake A Hill
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, United Kingdom
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Yvonne Nyathi
- Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Sam Horrell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - David von Stetten
- European Molecular Biology Laboratory, Notkestraße 85, 22607, Hamburg, Germany
| | - Danny Axford
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Robin L Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Godfrey S Beddard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Arwen R Pearson
- HARBOR, Institute for Nanostructure and Solid State Physics, Hamburg, 22761, Germany
| | - Helen M Ginn
- HARBOR, Institute for Nanostructure and Solid State Physics, Hamburg, 22761, Germany.
- Center for Free-Electron Laser Science, CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Briony A Yorke
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
5
|
Bergman MR, Hernandez SA, Deffler C, Yeo J, Deravi LF. Design and Characterization of Model Systems that Promote and Disrupt Transparency of Vertebrate Crystallins In Vitro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303279. [PMID: 37897315 PMCID: PMC10724405 DOI: 10.1002/advs.202303279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Indexed: 10/30/2023]
Abstract
Positioned within the eye, the lens supports vision by transmitting and focusing light onto the retina. As an adaptive glassy material, the lens is constituted primarily by densely-packed, polydisperse crystallin proteins that organize to resist aggregation and crystallization at high volume fractions, yet the details of how crystallins coordinate with one another to template and maintain this transparent microstructure remain unclear. The role of individual crystallin subtypes (α, β, and γ) and paired subtype compositions, including how they experience and resist crowding-induced turbidity in solution, is explored using combinations of spectrophotometry, hard-sphere simulations, and surface pressure measurements. After assaying crystallin combinations, β-crystallins emerged as a principal component in all mixtures that enabled dense fluid-like packing and short-range order necessary for transparency. These findings helped inform the design of lens-like hydrogel systems, which are used to monitor and manipulate the loss of transparency under different crowding conditions. When taken together, the findings illustrate the design and characterization of adaptive materials made from lens proteins that can be used to better understand mechanisms regulating transparency.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Sophia A. Hernandez
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Caitlin Deffler
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace EngineeringCornell University413 Upson Hall, 124 Hoy RdIthacaNY14850USA
| | - Leila F. Deravi
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| |
Collapse
|
6
|
Rodella U, Honisch C, Gatto C, Ruzza P, D'Amato Tóthová J. Antioxidant Nutraceutical Strategies in the Prevention of Oxidative Stress Related Eye Diseases. Nutrients 2023; 15:nu15102283. [PMID: 37242167 DOI: 10.3390/nu15102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review aims to discuss the delicate balance between the physiological production of reactive oxygen species and the role of antioxidant nutraceutical molecules in managing radicals in the complex anatomical structure of the eye. Many molecules and enzymes with reducing and antioxidant potential are present in different parts of the eye. Some of these, such as glutathione, N-acetylcysteine, α-lipoic acid, coenzyme Q10, and enzymatic antioxidants, are endogenously produced by the body. Others, such as plant-derived polyphenols and carotenoids, vitamins B2, C, and E, zinc and selenium, and omega-3 polyunsaturated fatty acids, must be obtained through the diet and are considered essential nutrients. When the equilibrium between the production of reactive oxygen species and their scavenging is disrupted, radical generation overwhelms the endogenous antioxidant arsenal, leading to oxidative stress-related eye disorders and aging. Therefore, the roles of antioxidants contained in dietary supplements in preventing oxidative stress-based ocular dysfunctions are also discussed. However, the results of studies investigating the efficacy of antioxidant supplementation have been mixed or inconclusive, indicating a need for future research to highlight the potential of antioxidant molecules and to develop new preventive nutritional strategies.
Collapse
Affiliation(s)
- Umberto Rodella
- Fondazione Banca degli Occhi del Veneto Onlus (FBOV), 30174 Zelarino, Italy
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy
| | - Claudio Gatto
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy
| | - Jana D'Amato Tóthová
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| |
Collapse
|
7
|
Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 2023; 14:e0286822. [PMID: 36809045 PMCID: PMC10128015 DOI: 10.1128/mbio.02868-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Toxoplasma gondii oocysts, which are shed in large quantities in the feces from infected felines, are very stable in the environment, resistant to most inactivation procedures, and highly infectious. The oocyst wall provides an important physical barrier for sporozoites contained inside oocysts, protecting them from many chemical and physical stressors, including most inactivation procedures. Furthermore, sporozoites can withstand large temperature changes, even freeze-thawing, as well as desiccation, high salinity, and other environmental insults; however, the genetic basis for this environmental resistance is unknown. Here, we show that a cluster of four genes encoding Late Embryogenesis Abundant (LEA)-related proteins are required to provide Toxoplasma sporozoites resistance to environmental stresses. Toxoplasma LEA-like genes (TgLEAs) exhibit the characteristic features of intrinsically disordered proteins, explaining some of their properties. Our in vitro biochemical experiments using recombinant TgLEA proteins show that they have cryoprotective effects on the oocyst-resident lactate dehydrogenase enzyme and that induced expression in E. coli of two of them leads to better survival after cold stress. Oocysts from a strain in which the four LEA genes were knocked out en bloc were significantly more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts. We discuss the evolutionary acquisition of LEA-like genes in Toxoplasma and other oocyst-producing apicomplexan parasites of the Sarcocystidae family and discuss how this has likely contributed to the ability of sporozoites within oocysts to survive outside the host for extended periods. Collectively, our data provide a first molecular detailed view on a mechanism that contributes to the remarkable resilience of oocysts against environmental stresses. IMPORTANCE Toxoplasma gondii oocysts are highly infectious and may survive in the environment for years. Their resistance against disinfectants and irradiation has been attributed to the oocyst and sporocyst walls by acting as physical and permeability barriers. However, the genetic basis for their resistance against stressors like changes in temperature, salinity, or humidity, is unknown. We show that a cluster of four genes encoding Toxoplasma Late Embryogenesis Abundant (TgLEA)-related proteins are important for this resistance to environmental stresses. TgLEAs have features of intrinsically disordered proteins, explaining some of their properties. Recombinant TgLEA proteins show cryoprotective effects on the parasite's lactate dehydrogenase, an abundant enzyme in oocysts, and expression in E. coli of two TgLEAs has a beneficial effect on growth after cold stress. Moreover, oocysts from a strain lacking all four TgLEA genes were more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts, highlighting the importance of the four TgLEAs for oocyst resilience.
Collapse
|
8
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
9
|
Composition, structural configuration, and antigenicity of Atlantic cod (Gadus morhua) tropomyosin. Food Chem 2023; 399:133966. [DOI: 10.1016/j.foodchem.2022.133966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/23/2022]
|
10
|
Bergman MR, Deravi LF. Manipulating polydispersity of lens β-crystallins using divalent cations demonstrates evidence of calcium regulation. Proc Natl Acad Sci U S A 2022; 119:e2212051119. [PMID: 36417439 PMCID: PMC9860307 DOI: 10.1073/pnas.2212051119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Crystallins comprise the protein-rich tissue of the eye lens. Of the three most common vertebrate subtypes, β-crystallins exhibit the widest degree of polydispersity due to their complex multimerization properties in situ. While polydispersity enables precise packing densities across the concentration gradient of the lens for vision, it is unclear why there is such a high degree of structural complexity within the β-crystallin subtype and what the role of this feature is in the lens. To investigate this, we first characterized β-crystallin polydispersity and then established a method to dynamically disrupt it in a process that is dependent on isoform composition and the presence of divalent cationic salts (CaCl2 or MgCl2). We used size-exclusion chromatography together with dynamic light scattering and mass spectrometry to show how high concentrations of divalent cations dissociate β-crystallin oligomers, reduce polydispersity, and shift the overall protein surface charge-properties that can be reversed when salts are removed. While the direct, physiological relevance of these divalent cations in the lens is still under investigation, our results support that specific isoforms of β-crystallin modulate polydispersity through multiple chemical equilibria and that this native state is disrupted by cation binding. This dynamic process may be essential to facilitating the molecular packing and optical function of the lens.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA02115
| | - Leila F. Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA02115
| |
Collapse
|
11
|
Serebryany E, Chowdhury S, Woods CN, Thorn DC, Watson NE, McClelland AA, Klevit RE, Shakhnovich EI. A native chemical chaperone in the human eye lens. eLife 2022; 11:76923. [PMID: 35723573 PMCID: PMC9246369 DOI: 10.7554/elife.76923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Sourav Chowdhury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, United States
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Nicki E Watson
- Center for Nanoscale Systems, Harvard University, Cambridge, United States
| | | | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
12
|
Nakano J, Chiba K, Niwa S. An ALS-associated KIF5A mutant forms oligomers and aggregates and induces neuronal toxicity. Genes Cells 2022; 27:421-435. [PMID: 35430760 PMCID: PMC9322661 DOI: 10.1111/gtc.12936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
KIF5A is a kinesin superfamily motor protein that transports various cargos in neurons. Mutations in Kif5a cause familial amyotrophic lateral sclerosis (ALS). These ALS mutations are in the intron of Kif5a and induce mis-splicing of KIF5A mRNA, leading to splicing out of exon 27, which in human KIF5A encodes the cargo-binding tail domain of KIF5A. Therefore, it has been suggested that ALS is caused by loss of function of KIF5A. However, the precise mechanisms regarding how mutations in KIF5A cause ALS remain unclear. Here, we show that an ALS-associated mutant of KIF5A, KIF5A(Δexon27), is predisposed to form oligomers and aggregates in cultured mouse cell lines. Interestingly, purified KIF5A(Δexon27) oligomers showed more active movement on microtubules than wild-type KIF5A in vitro. Purified KIF5A(∆exon27) was prone to form aggregates in vitro. Moreover, KIF5A(Δexon27)-expressing Caenorhabditis elegans neurons showed morphological defects. These data collectively suggest that ALS-associated mutations of KIF5A are toxic gain-of-function mutations rather than simple loss-of-function mutations.
Collapse
Affiliation(s)
- Juri Nakano
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS)Tohoku UniversitySendaiMiyagiJapan
| | - Shinsuke Niwa
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS)Tohoku UniversitySendaiMiyagiJapan
| |
Collapse
|
13
|
Chen X, Zhang G, Li P, Yu J, Kang L, Qin B, Wang Y, Wu J, Wang Y, Zhang J, Qin M, Guan H. SYVN1-mediated ubiquitination and degradation of MSH3 promotes the apoptosis of lens epithelial cells. FEBS J 2022; 289:5682-5696. [PMID: 35334159 DOI: 10.1111/febs.16447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
Abstract
The pathology of age-related cataract (ARC) mainly involves the misfolding and aggregation of proteins, especially oxidative damage repair proteins, in the lens, induced by ultraviolet-B (UVB). MSH3, as a key member of the mismatch repair family, primarily maintains genome stability. However, the function of MSH3 and the mechanism by which cells maintain MSH3 proteostasis during cataractogenesis remains unknown. In the present study, the protein expression levels of MSH3 were found to be attenuated in ARC specimens and SRA01/04 cells under UVB exposure. The ectopic expression of MSH3 notably impeded UVB-induced apoptosis, whereas the knockdown of MSH3 promoted apoptosis. Protein half-life assay revealed that UVB irradiation accelerated the decline of MSH3 by ubiquitination and degradation. Subsequently, we found that E3 ubiquitin ligase synoviolin (SYVN1) interacted with MSH3 and promoted its ubiquitination and degradation. Of note, the expression and function of SYVN1 were contrary to those of MSH3 and SYVN1 regulated MSH3 protein degradation via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway. Based on these findings, we propose a mechanism for ARC pathogenesis that involves SYVN1-mediated degradation of MSH3 via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway, and suggest that interventions targeting SYVN1 might be a potential therapeutic strategy for ARC.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Bai Qin
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Ying Wang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Miaomiao Qin
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, China
| |
Collapse
|
14
|
Patel S, Hosur RV. Replica exchange molecular dynamics simulations reveal self-association sites in M-crystallin caused by mutations provide insights of cataract. Sci Rep 2021; 11:23270. [PMID: 34857812 PMCID: PMC8639718 DOI: 10.1038/s41598-021-02728-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Crystallins are ubiquitous, however, prevalence is seen in eye lens. Eye lens crystallins are long-lived and structural intactness is required for maintaining lens transparency and protein solubility. Mutations in crystallins often lead to cataract. In this study, we performed mutations at specific sites of M-crystallin, a close homologue of eye lens crystallin and studied by using replica exchange molecular dynamics simulation with generalized Born implicit solvent model. Mutations were made on the Ca2+ binding residues (K34D and S77D) and in the hydrophobic core (W45R) which is known to cause congenital cataract in homologous γD-crystallin. The chosen mutations caused large motion of the N-terminal Greek key, concomitantly broke the interlocking Greek keys interactions and perturbed the compact core resulting in several folded and partially unfolded states. Partially unfolded states exposed large hydrophobic patches that could act as precursors for self-aggregation. Accumulation of such aggregates is the potential cause of cataract in homologous eye lens crystallins.
Collapse
Affiliation(s)
- Sunita Patel
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Vidyanagari, Mumbai, 400098, India.
| | - Ramakrishna V. Hosur
- grid.452882.1UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Vidyanagari, Mumbai, 400098 India
| |
Collapse
|
15
|
Strofaldi A, Khan AR, McManus JJ. Surface Exposed Free Cysteine Suppresses Crystallization of Human γD-Crystallin. J Mol Biol 2021; 433:167252. [PMID: 34537240 DOI: 10.1016/j.jmb.2021.167252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
Human γD-crystallin (HGD) has remarkable stability against condensation in the human lens, sometimes over a whole lifetime. The native protein has a surface exposed free cysteine that forms dimers (Benedek, 1997; Ramkumar et al., 1864)1,2 without specific biological function and leads to further protein association and/or aggregation, which creates a paradox for understanding its stability. Previous work has demonstrated that chemical modification of the protein at the free cysteine (C110), increases the temperature at which liquid-liquid phase separation occurs (LLPS), lowers protein solubility and suggests an important role for this amino acid in maintaining its long-term resistance to condensation. Here we demonstrate that mutation of the cysteine does not alter the structure or solubility (liquidus) line for the protein, but dramatically increases the protein crystal nucleation rate following LLPS, suggesting that the free cysteine has a vital role in suppressing crystallization in the human lens.
Collapse
Affiliation(s)
- Alessandro Strofaldi
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; H. H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Amir R Khan
- Division of Newborn Medicine, Boston Children's Hospital, Boston, USA; School of Biochemistry, Trinity College Dublin, Ireland
| | - Jennifer J McManus
- H. H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
| |
Collapse
|
16
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
17
|
Cataract-causing mutations L45P and Y46D promote γC-crystallin aggregation by disturbing hydrogen bonds network in the second Greek key motif. Int J Biol Macromol 2020; 167:470-478. [PMID: 33278449 DOI: 10.1016/j.ijbiomac.2020.11.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Congenital cataracts caused by genetic disorders are the primary cause of child blindness across the globe. In this work, we investigated the underlying molecular mechanism of two mutations, L45P and Y46D of γC-crystallin in two Chinese families causing nuclear congenital cataracts. Spectroscopic experiments were performed to determine structural differences between the wild-type (WT) and the L45P or Y46D mutant of γC-crystallin, and the structural stabilities of the WT and mutant proteins were measured under environmental stress (ultraviolet irradiation, pH disorders, oxidative stress, or chemical denaturation). The L45P and Y46D mutants had lower protein solubility and more hydrophobic residues exposed, making them prone to aggregation under environmental stress. The dynamic molecular simulation revealed that the L45P and Y46D mutations destabilized γC-crystallin by altering the hydrogen bonds network around the Trp residues in the second Greek key motif. In summary, L45P and Y46D mutants of γC-crystallin caused more hydrophobic residues to be solvent-exposed, lowered the solubility of γC-crystallin, and increased aggregation propensity under environmental stress. These might be the pathogenesis of γC-crystallin L45P and Y46D mutants related to congenital cataract.
Collapse
|
18
|
Roskamp KW, Azim S, Kassier G, Norton-Baker B, Sprague-Piercy MA, Miller RJD, Martin RW. Human γS-Crystallin-Copper Binding Helps Buffer against Aggregation Caused by Oxidative Damage. Biochemistry 2020; 59:2371-2385. [PMID: 32510933 DOI: 10.1021/acs.biochem.0c00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Günther Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - R J Dwyane Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany.,Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
19
|
Roskamp KW, Paulson CN, Brubaker WD, Martin RW. Function and Aggregation in Structural Eye Lens Crystallins. Acc Chem Res 2020; 53:863-874. [PMID: 32271004 DOI: 10.1021/acs.accounts.0c00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties. Crystallin aggregation resulting from mutation, damage, or aging can lead to cataract, a disease state characterized by opacity of the lens.Different aggregation mechanisms can occur, following multiple pathways and leading to aggregates with varied morphologies. Studies of variant proteins found in individuals with childhood-onset cataract have provided insight into the molecular factors underlying crystallin stability and solubility. Modulation of exposed hydrophobic surface is critical, as is preventing specific intermolecular interactions that could provide nucleation sites for aggregation. Biophysical measurements and structural biology techniques are beginning to provide a detailed picture of how crystallins crowd into the lens, providing high refractivity while avoiding excessively tight binding that would lead to aggregation.Despite the central biological importance of refractivity, relatively few experimental measurements have been made for lens crystallins. Our work and that of others have shown that hydration is important to the high refractive index of crystallin proteins, as are interactions between pairs of aromatic residues and potentially other specific structural features.This Account describes our efforts to understand both the functional and disease states of vertebrate eye lens crystallins, particularly the γ-crystallins. We use a variety of biophysical techniques, notably NMR spectroscopy, to investigate crystallin stability and solubility. In the first section, we describe efforts to understand the relative stability and aggregation propensity of different γS-crystallin variants. The second section focuses on interactions of these proteins with the holdase chaperone αB-crystallin. The third, fourth, and fifth sections explore different modes of aggregation available to crystallin proteins, and the final section highlights the importance of refractive index and the sometimes conflicting demands of selection for refractivity and solubility.
Collapse
Affiliation(s)
- Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Carolyn N. Paulson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - William D. Brubaker
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
20
|
Rana S, Sarmah S, Singha Roy A, Ghosh KS. Elucidation of molecular interactions between human γD-crystallin and quercetin, an inhibitor against tryptophan oxidation. J Biomol Struct Dyn 2020; 39:1811-1818. [DOI: 10.1080/07391102.2020.1738960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, India
| | - Sharat Sarmah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, India
| |
Collapse
|
21
|
Honisch C, Donadello V, Hussain R, Peterle D, De Filippis V, Arrigoni G, Gatto C, Giurgola L, Siligardi G, Ruzza P. Application of Circular Dichroism and Fluorescence Spectroscopies To Assess Photostability of Water-Soluble Porcine Lens Proteins. ACS OMEGA 2020; 5:4293-4301. [PMID: 32149259 PMCID: PMC7057709 DOI: 10.1021/acsomega.9b04234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The eye lens is mainly composed of the highly ordered water-soluble (WS) proteins named crystallins. The aggregation and insolubilization of these proteins lead to progressive lens opacification until cataract onset. Although this is a well-known disease, the mechanism of eye lens protein aggregation is not well understood; however, one of the recognized causes of proteins modification is related to the exposure to UV light. For this reason, the spectroscopic properties of WS lens proteins and their stability to UV irradiation have been evaluated by different biophysical methods including synchrotron radiation circular dichroism, fluorescence, and circular dichroism spectroscopies. Moreover, dynamic light scattering, gel electrophoresis, transmission electron microscopy, and protein digestion followed by tandem LC-MS/MS analysis were used to study the morphological and structural changes in protein aggregates induced by exposure to UV light. Our results clearly indicated that the exposure to UV radiation modified the protein conformation, inducing a loss of ordered structure and aggregation. Furthermore, we confirmed that these changes were attributable to the generation of reactive oxygen species due to the irradiation of the protein sample. This approach, involving the photodenaturation of proteins, provides a benchmark in high-throughput screening of small molecules suitable to prevent protein denaturation and aggregation.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Viola Donadello
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
| | - Rohanah Hussain
- Diamond
Light Source Ltd., Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Daniele Peterle
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Vincenzo De Filippis
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department
of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Proteomics
Center, University of Padova and Azienda
Ospedaliera di Padova, 35129 Padova, Italy
| | - Claudio Gatto
- Alchilife
Srl, R&D, Viale Austria
14, 35020 Ponte
San Nicolò (PD), Italy
| | - Laura Giurgola
- Alchilife
Srl, R&D, Viale Austria
14, 35020 Ponte
San Nicolò (PD), Italy
| | - Giuliano Siligardi
- Diamond
Light Source Ltd., Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Paolo Ruzza
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
| |
Collapse
|
22
|
Aguayo-Ortiz R, Dominguez L. Effects of Mutating Trp42 Residue on γD-Crystallin Stability. J Chem Inf Model 2020; 60:777-785. [PMID: 31747273 DOI: 10.1021/acs.jcim.9b00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oligomerization and aggregation of γD-crystallins (HγDC) in the eye lens is one of the main causes of cataract development. To date, several congenital mutations related to this protein are known to promote the formation of aggregates. Previous studies have demonstrated that mutations in W42 residue of HγDC lead to the generation of partially unfolded intermediates that are more prone to aggregate. To understand the role of W42 in the stability of HγDC, we performed alchemical free-energy calculations and all-atom molecular dynamics simulations of different W42 mutant models. Our results suggest that substitution of W42 by small size and/or polar residues promotes HγDC denaturation due to the entry of water molecules into the hydrophobic core of the N-terminal domain. Similar behavior was observed in the C-terminal domain of HγDC when mutating the W130 residue located in a homologous position. Moreover, the exposure of the hydrophobic core residues could lead to the formation of aggregation-prone partially unfolded species. Overall, this study takes a step toward understanding the role of HγDC in cataract development.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica , Universidad Nacional Autónoma de México , Mexico City 04510 , Mexico.,Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica , Universidad Nacional Autónoma de México , Mexico City 04510 , Mexico
| |
Collapse
|
23
|
Abstract
The crystallins (α, β and γ), major constituent proteins of eye lens fiber cells play their critical role in maintaining the transparency and refractive index of the lens. Under different stress factors and with aging, β- and γ-crystallins start to unfold partially leading to their aggregation. Protein aggregation in lens basically enhances light scattering and causes the vision problem, commonly known as cataract. α-crystallin as a molecular chaperone forms complexes with its substrates (β- and γ-crystallins) to prevent such aggregation. In this chapter, the structural features of β- and γ-crystallins have been discussed. Detailed structural information linked with the high stability of γC-, γD- and γS-crystallins have been incorporated. The nature of homologous and heterologous interactions among crystallins has been deciphered, which are involved in their molecular association and complex formation.
Collapse
Affiliation(s)
- Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, Himachal Pradesh, India.
| | - Priyanka Chauhan
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, Himachal Pradesh, India
| |
Collapse
|
24
|
Rana S, Ghosh KS. Protective role of hesperetin against posttranslational oxidation of tryptophan residue of human γD-crystallin: A molecular level study. Arch Biochem Biophys 2019; 679:108204. [PMID: 31758928 DOI: 10.1016/j.abb.2019.108204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 11/19/2022]
Abstract
Crystallin proteins undergo various posttranslational modifications with aging of eye lens. Oxidation of tryptophan (Trp) residues of a major γ-crystallin namely human γD-crystallin (HGD) was found to be inhibited by a naturally occurring flavonoid hesperetin at relatively low concentration mostly due to its antioxidant activity. Further the molecular interactions between HGD and hesperetin were elucidated on the basis of the quenching of Trp fluorescence of the protein by the flavonoid. Ground state complexation between HGD and hesperetin caused static quenching of the Trp fluorescence of HGD. Binding and quenching constants were in the order of (103- 104 M-1). Energy transfer from protein to hesperetin was suggested by FRET calculations. Thermodynamic parameters reveal significant hydrophobic association between the protein and hesperetin. Synchronous fluorescence and CD spectroscopic results had ruled out conformational changes in the protein due to binding of hesperetin. Docking studies suggested the proximity of hesperetin with Trp 42, which largely corroborates our experimental findings.
Collapse
Affiliation(s)
- Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, 177005, India.
| |
Collapse
|
25
|
Hua H, Yang T, Huang L, Chen R, Li M, Zou Z, Wang N, Yang D, Liu Y. Protective Effects of Lanosterol Synthase Up-Regulation in UV-B-Induced Oxidative Stress. Front Pharmacol 2019; 10:947. [PMID: 31555133 PMCID: PMC6726740 DOI: 10.3389/fphar.2019.00947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
UV-B radiation may be an important risk factor in cataract etiology. After exposure to UV-B radiation, cells show imbalances in the repair of DNA damage, which induce changes in the levels of certain proteins, including alpha-crystallin, which is the most abundant protein in the lens and crucial for the maintenance of lens transparency. Lanosterol synthase (LSS), an essential rate-limiting enzyme in cholesterol biosynthesis, might play significant roles in oxidative stress and in the maintenance of lens transparency. However, the roles of LSS in UV-B-induced apoptosis are not well understood. Therefore, we irradiated female Sprague-Dawley rats with ultraviolet radiation to establish an animal model for exploring the variations in LSS expression during the early stages of UV-B exposure. In addition, we cultured human lens epithelial (HLE) cells that overexpress LSS and exposed them to UV-B radiation to explore the function of increased LSS expression in UV-B-induced apoptosis. The data demonstrated that UV-B exposure induced oxidative stress and apoptosis in rat lens epithelial cells and that irradiance exposure increased the level of lenticular damage. Additionally, UV-B exposure decreased the alpha-crystallin content and increased the expressions of Bax and cleaved caspase-3 compared with the control levels. After exposure to UV-B, the apoptosis-related index of HLE cells overexpressing LSS was lower than that of the control cells. Furthermore, ROS overproduction might activate the sirtuin 1 (Sirt1) pathway, which induced protein expressions of sterol regulatory element-binding transcription factor 2 (SREBF2), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), and LSS. However, the specific mechanism of the Sirt1 pathway needed to be further studied. In summary, UV-B exposure induced oxidative injury and resulted in crystallin denaturation and apoptosis in lens epithelial cells, and LSS might play a protective role during the early stages of this process and could be an important target in the cataract prevention.
Collapse
Affiliation(s)
- Hui Hua
- School of Public Health, China Medical University, Shenyang, China
| | - Tianyao Yang
- School of Public Health, China Medical University, Shenyang, China
| | - Liting Huang
- School of Public Health, China Medical University, Shenyang, China
| | - Rentong Chen
- School of Public Health, China Medical University, Shenyang, China
| | - Menglin Li
- School of Public Health, China Medical University, Shenyang, China
| | - Zhenzhen Zou
- School of Public Health, China Medical University, Shenyang, China
| | - Nan Wang
- School of Public Health, China Medical University, Shenyang, China
| | - Dan Yang
- School of Public Health, China Medical University, Shenyang, China
| | - Yang Liu
- School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Phototoxicity of environmental radiations in human lens: revisiting the pathogenesis of UV-induced cataract. Graefes Arch Clin Exp Ophthalmol 2019; 257:2065-2077. [PMID: 31227898 DOI: 10.1007/s00417-019-04390-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
The magnitude of cataract pathology is indeed significant as it is the principal cause of blindness worldwide. Also, the prominence of this concept escalates with the current aging population. The burden of the disease is more tangible in developing countries than developed ones. Regarding this concern, there is a gap in classifying the pathogenesis of the ultraviolet (UV) radiation-induced cataracts and explaining the possible cellular and subcellular pathways. In this review, we aim to revisit the effect of UV radiation on cataracts categorizing the cellular pathways involved. This may help for better pharmaceutical treatment alternatives and their wide-reaching availability. Also, in the last section, we provide an overview of the protecting agents utilized as UV shields. Further studies are required to enlighten new treatment modalities for UV radiation-induced pathologies in human lens.
Collapse
|
27
|
McCaslin TG, Pagba CV, Chi SH, Hwang HJ, Gumbart JC, Perry JW, Olivieri C, Porcelli F, Veglia G, Guo Z, McDaniel M, Barry BA. Structure and Function of Tryptophan-Tyrosine Dyads in Biomimetic β Hairpins. J Phys Chem B 2019; 123:2780-2791. [PMID: 30888824 PMCID: PMC6463897 DOI: 10.1021/acs.jpcb.8b12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Tyrosine–tryptophan (YW) dyads
are ubiquitous
structural motifs in enzymes and play roles in proton-coupled electron
transfer (PCET) and, possibly, protection from oxidative stress. Here,
we describe the function of YW dyads in de novo designed 18-mer, β
hairpins. In Peptide M, a YW dyad is formed between W14 and Y5. A
UV hypochromic effect and an excitonic Cotton signal are observed,
in addition to singlet, excited state (W*) and fluorescence emission
spectral shifts. In a second Peptide, Peptide MW, a Y5–W13
dyad is formed diagonally across the strand and distorts the backbone.
On a picosecond timescale, the W* excited-state decay kinetics are
similar in all peptides but are accelerated relative to amino acids
in solution. In Peptide MW, the W* spectrum is consistent with increased
conformational flexibility. In Peptide M and MW, the electron paramagnetic
resonance spectra obtained after UV photolysis are characteristic
of tyrosine and tryptophan radicals at 160 K. Notably, at pH 9, the
radical photolysis yield is decreased in Peptide M and MW, compared
to that in a tyrosine and tryptophan mixture. This protective effect
is not observed at pH 11 and is not observed in peptides containing
a tryptophan–histidine dyad or tryptophan alone. The YW dyad
protective effect is attributed to an increase in the radical recombination
rate. This increase in rate can be facilitated by hydrogen-bonding
interactions, which lower the barrier for the PCET reaction at pH
9. These results suggest that the YW dyad structural motif promotes
radical quenching under conditions of reactive oxygen stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems , University of Tuscia , 01100 Viterbo , Italy
| | | | | | | | | |
Collapse
|
28
|
Comprehensive measurements of hydroxylinoleate and hydroxyarachidonate isomers in blood samples from primary open-angle glaucoma patients and controls. Sci Rep 2019; 9:2171. [PMID: 30778084 PMCID: PMC6379359 DOI: 10.1038/s41598-018-36952-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
We previously reported that lower systemic antioxidant capacity is involved in primary open-angle glaucoma (POAG) and exfoliation syndrome pathogeneses as measured by ferric-reducing activity. In the present study, we measured hydroxylinoleate (HODE) and hydroxyarachidonate (HETE) isomer serum levels after sample reduction and saponification to investigate POAG pathogenesis. POAG patients (n = 198) were recruited and divided into normal- and high-tension glaucoma groups (n = 84 and 114, respectively) depending on intraocular pressure. Total HODE (/linoleic acid) and HETE (/arachidonic acid) serum levels were significantly higher in the POAG group (211.9 ± 143.0 and 181.0 ± 164.1 µmol/mol, respectively) than in controls (167.1 ± 105.2 and 132.5 ± 139.7 µmol/mol, p = 0.0025 and 0.0101, respectively). The associations between HODEs/HETEs and glaucoma were further confirmed by multivariate analyses after adjusting for differences in demographic parameters. Among the HODE isomers, the levels of 9- and 13-(Z,E)-HODEs (p = 0.0014) and singlet oxygen-specific products (i.e., 10- and 12-(Z,E)-HODEs, p = 0.0345) were higher in the POAG group than in controls, while free radical-mediated oxidation-specific products (i.e., 9- and 13-(E,E)-HODEs, p = 0.0557) demonstrated a marginal difference. Enzymatic and singlet oxygen-mediated fatty acid oxidation may be major pathways of oxidation process in glaucoma subjects.
Collapse
|
29
|
Serebryany E, Yu S, Trauger SA, Budnik B, Shakhnovich EI. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation. J Biol Chem 2018; 293:17997-18009. [PMID: 30242128 DOI: 10.1074/jbc.ra118.004551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Increased light scattering in the eye lens due to aggregation of the long-lived lens proteins, crystallins, is the cause of cataract disease. Several mutations in the gene encoding human γD-crystallin (HγD) cause misfolding and aggregation. Cataract-associated substitutions at Trp42 cause the protein to aggregate in vitro from a partially unfolded intermediate locked by an internal disulfide bridge, and proteomic evidence suggests a similar aggregation precursor is involved in age-onset cataract. Surprisingly, WT HγD can promote aggregation of the W42Q variant while itself remaining soluble. Here, a search for a biochemical mechanism for this interaction has revealed a previously unknown oxidoreductase activity in HγD. Using in vitro oxidation, mutational analysis, cysteine labeling, and MS, we have assigned this activity to a redox-active internal disulfide bond that is dynamically exchanged among HγD molecules. The W42Q variant acts as a disulfide sink, reducing oxidized WT and forming a distinct internal disulfide that kinetically traps the aggregation-prone intermediate. Our findings suggest a redox "hot potato" competition among WT and mutant or modified polypeptides wherein variants with the lowest kinetic stability are trapped in aggregation-prone intermediate states upon accepting disulfides from more stable variants. Such reactions may occur in other long-lived proteins that function in oxidizing environments. In these cases, aggregation may be forestalled by inhibiting disulfide flow toward mutant or damaged polypeptides.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Eugene I Shakhnovich
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
30
|
Chemerovski-Glikman M, Mimouni M, Dagan Y, Haj E, Vainer I, Allon R, Blumenthal EZ, Adler-Abramovich L, Segal D, Gazit E, Zayit-Soudry S. Rosmarinic Acid Restores Complete Transparency of Sonicated Human Cataract Ex Vivo and Delays Cataract Formation In Vivo. Sci Rep 2018; 8:9341. [PMID: 29921877 PMCID: PMC6008418 DOI: 10.1038/s41598-018-27516-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Cataract, the leading cause of vision impairment worldwide, arises from abnormal aggregation of crystallin lens proteins. Presently, surgical removal is the only therapeutic approach. Recent findings have triggered renewed interest in development of non-surgical treatment alternatives. However, emerging treatments are yet to achieve full and consistent lens clearance. Here, the first ex vivo assay to screen for drug candidates that reduce human lenticular protein aggregation was developed. This assay allowed the identification of two leading compounds as facilitating the restoration of nearly-complete transparency of phacoemulsified cataractous preparation ex vivo. Mechanistic studies demonstrated that both compounds reduce cataract microparticle size and modify their amyloid-like features. In vivo studies confirmed that the lead compound, rosmarinic acid, delays cataract formation and reduces the severity of lens opacification in model rats. Thus, the ex vivo assay may provide an initial platform for broad screening of potential novel therapeutic agents towards pharmacological treatment of cataract.
Collapse
Affiliation(s)
- Marina Chemerovski-Glikman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Yarden Dagan
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Esraa Haj
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Igor Vainer
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Raviv Allon
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Eytan Z Blumenthal
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
- Sagol Interdisciplinary School of Neurosciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel.
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Shiri Zayit-Soudry
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
31
|
Chaudhury S, Bag S, Bose M, Das AK, Ghosh AK, Dasgupta S. Protection of human γB-crystallin from UV-induced damage by epigallocatechin gallate: spectroscopic and docking studies. MOLECULAR BIOSYSTEMS 2017; 12:2901-9. [PMID: 27410057 DOI: 10.1039/c6mb00256k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transparency of the human eye lens depends on the solubility and stability of the structural proteins of the eye lens, the crystallins. Although the mechanism of cataract formation is still unclear, it is believed to involve protein misfolding and/or aggregation of proteins due to the influence of several external factors such as ultraviolet (UV) radiation, low pH, temperature and exposure to chemical agents. In this article, we report the study of UV induced photo-damage (under oxidative stress) of recombinant human γB-crystallin in vitro in the presence of the major green tea polyphenol, (-)-epigallocatechin gallate (EGCG). We have shown that EGCG has the ability to protect human γB-crystallin from oxidative stress-induced photo-damage.
Collapse
Affiliation(s)
| | - Sudipta Bag
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Madhuparna Bose
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
32
|
Zhang TO, Alperstein AM, Zanni MT. Amyloid β-Sheet Secondary Structure Identified in UV-Induced Cataracts of Porcine Lenses using 2D IR Spectroscopy. J Mol Biol 2017; 429:1705-1721. [PMID: 28454743 PMCID: PMC5493149 DOI: 10.1016/j.jmb.2017.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/08/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
Abstract
Cataracts are formed by the aggregation of crystallin proteins in the eye lens. Many in vitro studies have established that crystallin proteins precipitate into aggregates that contain amyloid fibers when denatured, but there is little evidence that ex vivo cataracts contain amyloid. In this study, we collect two-dimensional infrared (2D IR) spectra on tissue slices of porcine eye lenses. As shown in control experiments on in vitro αB- and γD-crystallin, 2D IR spectroscopy can identify the highly ordered β-sheets typical of amyloid secondary structure even if the fibers themselves are too short to be resolved with TEM. In ex vivo experiments of acid-treated tissues, characteristic 2D IR features are observed and fibers >50nm in length are resolved by transmission electron microscopy (TEM), consistent with amyloid fibers. In UV-irradiated lens tissues, fibers are not observed with TEM, but highly ordered β-sheets of amyloid secondary structure is identified from the 2D IR spectra. The characteristic 2D IR features of amyloid β-sheet secondary structure are created by as few as four or five strands and so identify amyloid secondary structure even if the aggregates themselves are too small to be resolved with TEM. We discuss these findings in the context of the chaperone system of the lens, which we hypothesize sequesters small aggregates, thereby preventing long fibers from forming. This study expands the scope of heterodyned 2D IR spectroscopy to tissues. The results provide a link between in vitro and ex vivo studies and support the hypothesis that cataracts are an amyloid disease.
Collapse
Affiliation(s)
- Tianqi O Zhang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Ariel M Alperstein
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Cetinel S, Semenchenko V, Cho JY, Sharaf MG, Damji KF, Unsworth LD, Montemagno C. UV-B induced fibrillization of crystallin protein mixtures. PLoS One 2017; 12:e0177991. [PMID: 28542382 PMCID: PMC5444657 DOI: 10.1371/journal.pone.0177991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Environmental factors, mainly oxidative stress and exposure to sunlight, induce the oxidation, cross-linking, cleavage, and deamination of crystallin proteins, resulting in their aggregation and, ultimately, cataract formation. Various denaturants have been used to initiate the aggregation of crystallin proteins in vitro. All of these regimens, however, are obviously far from replicating conditions that exist in vivo that lead to cataract formation. In fact, it is our supposition that only UV-B radiation may mimic the observed in vivo cause of crystallin alteration leading to cataract formation. This means of inducing cataract formation may provide the most appropriate in vitro platform for in-depth study of the fundamental cataractous fibril properties and allow for testing of possible treatment strategies. Herein, we showed that cataractous fibrils can be formed using UV-B radiation from α:β:γ crystallin protein mixtures. Characterization of the properties of formed aggregates confirmed the development of amyloid-like fibrils, which are in cross-β-pattern and possibly in anti-parallel β-sheet arrangement. Furthermore, we were also able to confirm that the presence of the molecular chaperone, α-crystallin, was able to inhibit fibril formation, as observed for ‘naturally’ occurring fibrils. Finally, the time-dependent fibrillation profile was found to be similar to the gradual formation of age-related nuclear cataracts. This data provided evidence for the initiation of fibril formation from physiologically relevant crystallin mixtures using UV-B radiation, and that the formed fibrils had several traits similar to that expected from cataracts developing in vivo.
Collapse
Affiliation(s)
- Sibel Cetinel
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Ingenuity Lab., University of Alberta, Edmonton, AB, Canada
| | - Valentyna Semenchenko
- National Institute of Nanotechnology (NINT), 11421, Saskatchewan Drive NW, Edmonton, AB, Canada
| | - Jae-Young Cho
- National Institute of Nanotechnology (NINT), 11421, Saskatchewan Drive NW, Edmonton, AB, Canada
| | - Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Ingenuity Lab., University of Alberta, Edmonton, AB, Canada
| | - Karim F. Damji
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB, Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- National Institute of Nanotechnology (NINT), 11421, Saskatchewan Drive NW, Edmonton, AB, Canada
- * E-mail: (CM); (LDU)
| | - Carlo Montemagno
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Ingenuity Lab., University of Alberta, Edmonton, AB, Canada
- * E-mail: (CM); (LDU)
| |
Collapse
|
34
|
Chaudhury S, Roy P, Dasgupta S. Green tea flavanols protect human γB-crystallin from oxidative photodamage. Biochimie 2017; 137:46-55. [PMID: 28285129 DOI: 10.1016/j.biochi.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
Age related cataract is a major cause of visual loss worldwide that is a result of opacification of the eye lens proteins. One of the major reasons behind this deterioration is UV induced oxidative damage. The study reported here is focused on an investigation of the oxidative stress induced damage to γB-crystallin under UV exposure. Human γB-crystallin has been expressed and purified from E. coli. We have found that epicatechin gallate (ECG) has a higher affinity towards the protein compared to epigallocatechin (EGC). The in vitro study of UV irradiation under oxidative damage to the protein in the presence of increasing concentrations of GTPs is indicative of their effective role as potent inhibitors of oxidative damage. Docking analyses show that the GTPs bind to the cleft between the domains of human γB-crystallin that may be associated with the protection of the protein from oxidative damage.
Collapse
Affiliation(s)
| | - Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
35
|
Visible light neutralizes the effect produced by ultraviolet radiation in proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:15-19. [DOI: 10.1016/j.jphotobiol.2016.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/24/2022]
|
36
|
Serebryany E, Woodard JC, Adkar BV, Shabab M, King JA, Shakhnovich EI. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin. J Biol Chem 2016; 291:19172-83. [PMID: 27417136 DOI: 10.1074/jbc.m116.735977] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 11/06/2022] Open
Abstract
Considerable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered "amorphous," and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage. We found that formation of an internal disulfide was necessary and sufficient for aggregation under physiological conditions. Two-chain all-atom simulations predicted that one non-native disulfide in particular, between Cys(32) and Cys(41), was likely to stabilize an unfolding intermediate prone to intermolecular interactions. Mass spectrometry and mutagenesis experiments confirmed the presence of this bond in the aggregates and its necessity for oxidative aggregation under physiological conditions in vitro Mining the simulation data linked formation of this disulfide to extrusion of the N-terminal β-hairpin and rearrangement of the native β-sheet topology. Specific binding between the extruded hairpin and a distal β-sheet, in an intermolecular chain reaction similar to domain swapping, is the most probable mechanism of aggregate propagation.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Jaie C Woodard
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Bharat V Adkar
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mohammed Shabab
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Jonathan A King
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Eugene I Shakhnovich
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
37
|
Serebryany E, Takata T, Erickson E, Schafheimer N, Wang Y, King JA. Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract. Protein Sci 2016; 25:1115-28. [PMID: 26991007 DOI: 10.1002/pro.2924] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
Numerous mutations and covalent modifications of the highly abundant, long-lived crystallins of the eye lens cause their aggregation leading to progressive opacification of the lens, cataract. The nature and biochemical mechanisms of the aggregation process are poorly understood, as neither amyloid nor native-state polymers are commonly found in opaque lenses. The βγ-crystallin fold contains four highly conserved buried tryptophans, which can be oxidized to more hydrophilic products, such as kynurenine, upon UV-B irradiation. We mimicked this class of oxidative damage using Trp→Glu point mutants of human γD-crystallin. Such substitutions may represent a model of UV-induced photodamage-introduction of a charged group into the hydrophobic core generating "denaturation from within." The effects of Trp→Glu substitutions were highly position dependent. While each was destabilizing, only the two located in the bottom of the double Greek key fold-W42E and W130E-yielded robust aggregation of partially unfolded intermediates at 37°C and pH 7. The αB-crystallin chaperone suppressed aggregation of W130E, but not W42E, indicating distinct aggregation pathways from damage in the N-terminal vs C-terminal domain. The W130E aggregates had loosely fibrillar morphology, yet were nonamyloid, noncovalent, showed little surface hydrophobicity, and formed at least 20°C below the melting temperature of the native β-sheets. These features are most consistent with domain-swapped polymerization. Aggregation of partially destabilized crystallins under physiological conditions, as occurs in this class of point mutants, could provide a simple in vitro model system for drug discovery and optimization.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Takumi Takata
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Erika Erickson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Nathaniel Schafheimer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yongting Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
38
|
Vendra VPR, Khan I, Chandani S, Muniyandi A, Balasubramanian D. Gamma crystallins of the human eye lens. Biochim Biophys Acta Gen Subj 2015; 1860:333-43. [PMID: 26116913 DOI: 10.1016/j.bbagen.2015.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/08/2015] [Accepted: 06/19/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Protein crystallins co me in three types (α, β and γ) and are found predominantly in the eye, and particularly in the lens, where they are packed into a compact, plastic, elastic, and transparent globule of proper refractive power range that aids in focusing incoming light on to the retina. Of these, the γ-crystallins are found largely in the nuclear region of the lens at very high concentrations (>400 mg/ml). The connection between their structure and inter-molecular interactions and lens transparency is an issue of particular interest. SCOPE OF REVIEW We review the origin and phylogeny of the gamma crystallins, their special structure involving the use of Greek key supersecondary structural motif, and how they aid in offering the appropriate refractive index gradient, intermolecular short range attractive interactions (aiding in packing them into a transparent ball), the role that several of the constituent amino acid residues play in this process, the thermodynamic and kinetic stability and how even single point mutations can upset this delicate balance and lead to intermolecular aggregation, forming light-scattering particles which compromise transparency. We cite several examples of this, and illustrate this by cloning, expressing, isolating and comparing the properties of the mutant protein S39C of human γS-crystallin (associated with congenital cataract-microcornea), with those of the wild type molecule. In addition, we note that human γ-crystallins are also present in other parts of the eye (e.g., retina), where their functions are yet to be understood. MAJOR CONCLUSIONS There are several 'crucial' residues in and around the Greek key motifs which are essential to maintain the compact architecture of the crystallin molecules. We find that a mutation that replaces even one of these residues can lead to reduction in solubility, formation of light-scattering particles and loss of transparency in the molecular assembly. GENERAL SIGNIFICANCE Such a molecular understanding of the process helps us construct the continuum of genotype-molecular structural phenotype-clinical (pathological) phenotype. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Venkata Pulla Rao Vendra
- Ophthalmic Molecular Genetics Section, National Eye Institute, Building 5635FL, Room 1S24, 5625 Fishers Lane, Rockville, MD 20852, United States.
| | - Ismail Khan
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad 500034 Telangana, India.
| | - Sushil Chandani
- Plot 32, LIC Colony, W Marredpally, Secunderabad 500026, Telangana, India.
| | - Anbukkarasi Muniyandi
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| | - Dorairajan Balasubramanian
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad 500034 Telangana, India.
| |
Collapse
|
39
|
Hlavata L, Striesova I, Ignat T, Blaskovisova J, Ruttkay-Nedecky B, Kopel P, Adam V, Kizek R, Labuda J. An electrochemical DNA-based biosensor to study the effects of CdTe quantum dots on UV-induced damage of DNA. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1502-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Serebryany E, King JA. Wild-type human γD-crystallin promotes aggregation of its oxidation-mimicking, misfolding-prone W42Q mutant. J Biol Chem 2015; 290:11491-503. [PMID: 25787081 DOI: 10.1074/jbc.m114.621581] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 11/06/2022] Open
Abstract
Non-native protein conformers generated by mutation or chemical damage template aggregation of wild-type, undamaged polypeptides in diseases ranging from amyotrophic lateral sclerosis to cancer. We tested for such interactions in the natively monomeric human eye lens protein γd-crystallin, whose aggregation leads to cataract disease. The oxidation-mimicking W42Q mutant of γd-crystallin formed non-native polymers starting from a native-like state under physiological conditions. Aggregation occurred in the temperature range 35-45 °C, in which the mutant protein began to lose the native conformation of its N-terminal domain. Surprisingly, wild-type γd-crystallin promoted W42Q polymerization in a catalytic manner, even at mutant concentrations too low for homogeneous nucleation to occur. The presence of wild-type protein also downshifted the temperature range of W42Q aggregation. W42Q aggregation required formation of a non-native intramolecular disulfide bond but not intermolecular cross-linking. Transient WT/W42Q binding may catalyze this oxidative misfolding event in the mutant. That a more stable variant in a mixture can specifically promote aggregation of a less stable one rationalizes how extensive aggregation of rare damaged polypeptides can occur during the course of aging.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jonathan A King
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
41
|
DiMauro MA, Nandi SK, Raghavan CT, Kar RK, Wang B, Bhunia A, Nagaraj RH, Biswas A. Acetylation of Gly1 and Lys2 promotes aggregation of human γD-crystallin. Biochemistry 2014; 53:7269-82. [PMID: 25393041 PMCID: PMC4245984 DOI: 10.1021/bi501004y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The human lens contains three major
protein families: α-,
β-, and γ-crystallin. Among the several variants of γ-crystallin
in the human lens, γD-crystallin is a major form. γD-Crystallin
is primarily present in the nuclear region of the lens and contains
a single lysine residue at the second position (K2). In this study,
we investigated the acetylation of K2 in γD-crystallin in aging
and cataractous human lenses. Our results indicated that K2 is acetylated
at an early age and that the amount of K2-acetylated γD-crystallin
increased with age. Mass spectrometric analysis revealed that in addition
to K2, glycine 1 (G1) was acetylated in γD-crystallin from human
lenses and in γD-crystallin acetylated in vitro. The chaperone ability of α-crystallin for acetylated γD-crystallin
was lower than that for the nonacetylated protein. The tertiary structure
and the microenvironment of the cysteine residues were significantly
altered by acetylation. The acetylated protein exhibited higher surface
hydrophobicity, was unstable against thermal and chemical denaturation,
and exhibited a higher propensity to aggregate at 80 °C in comparison
to the nonacetylated protein. Acetylation enhanced the GdnHCl-induced
unfolding and slowed the subsequent refolding of γD-crystallin.
Theoretical analysis indicated that the acetylation of K2 and G1 reduced
the structural stability of the protein and brought the distal cysteine
residues (C18 and C78) into close proximity. Collectively, these results
indicate that the acetylation of G1 and K2 residues in γD-crystallin
likely induced a molten globule-like structure, predisposing it to
aggregation, which may account for the high content of aggregated
proteins in the nucleus of aged and cataractous human lenses.
Collapse
Affiliation(s)
- Michael A DiMauro
- Department of Ophthalmology and Visual Sciences and ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine , Cleveland, Ohio, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Serebryany E, King JA. The βγ-crystallins: native state stability and pathways to aggregation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:32-41. [PMID: 24835736 DOI: 10.1016/j.pbiomolbio.2014.05.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/26/2023]
Abstract
The βγ-crystallins are among the most stable and long-lived proteins in the human body. With increasing age, however, they transform to high molecular weight light-scattering aggregates, resulting in cataracts. This occurs despite the presence in the lens of high concentrations of the a-crystallin chaperones. Aggregation of crystallins can be induced in vitro by a variety of stresses, including acidic pH, ultraviolet light, oxidative damage, heating or freezing, and specific amino acid substitutions. Accumulating evidence points to the existence of specific biochemical pathways of protein: protein interaction and polymerization. We review the methods used for studying crystallin stability and aggregation and discuss the sometimes counterintuitive relationships between factors that favor native state stability and those that favor non-native aggregation. We discuss the behavior of βγ-crystallins in mixtures and their chaperone ability; the consequences of missense mutations and covalent damage to the side-chains; and the evolutionary strategies that have shaped these proteins. Efforts are ongoing to reveal the nature of cataractous crystallin aggregates and understand the mechanisms of aggregation in the context of key models of protein polymerization: amyloid, native-state, and domain-swapped. Such mechanistic understanding is likely to be of value for the development of therapeutic interventions and draw attention to unanswered questions about the relationship between a protein's native state stability and its transformation to an aggregated state.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
43
|
Schafheimer N, Wang Z, Schey K, King J. Tyrosine/cysteine cluster sensitizing human γD-crystallin to ultraviolet radiation-induced photoaggregation in vitro. Biochemistry 2014; 53:979-90. [PMID: 24410332 PMCID: PMC3954642 DOI: 10.1021/bi401397g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Ultraviolet
radiation (UVR) exposure is a major risk factor for
age-related cataract, a protein-aggregation disease of the human lens
often involving the major proteins of the lens, the crystallins. γD-Crystallin
(HγD-Crys) is abundant in the nucleus of the human lens, and
its folding and aggregation have been extensively studied. Previous
work showed that HγD-Crys photoaggregates in vitro upon exposure
to UVA/UVB light and that its conserved tryptophans are not required
for aggregation. Surprisingly, the tryptophan residues play a photoprotective
role because of a distinctive energy-transfer mechanism. HγD-Crys
also contains 14 tyrosine residues, 12 of which are organized as six
pairs. We investigated the role of the tyrosines of HγD-Crys
by replacing pairs with alanines and monitoring photoaggregation using
light scattering and SDS-PAGE. Mutating both tyrosines in the Y16/Y28
pair to alanine slowed the formation of light-scattering aggregates.
Further mutant studies implicated Y16 as important for photoaggregation.
Mass spectrometry revealed that C18, in contact with Y16, is heavily
oxidized during UVR exposure. Analysis of multiple mutant proteins
by mass spectrometry suggested that Y16 and C18 likely participate
in the same photochemical process. The data suggest an initial photoaggregation
pathway for HγD-Crys in which excited-state Y16 interacts with
C18, initiating radical polymerization.
Collapse
Affiliation(s)
- Nathaniel Schafheimer
- Department of Biology, Massachusetts Institute of Technology , 68-330, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
44
|
Moran SD, Zhang TO, Zanni MT. An alternative structural isoform in amyloid-like aggregates formed from thermally denatured human γD-crystallin. Protein Sci 2014; 23:321-31. [PMID: 24415662 DOI: 10.1002/pro.2422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/11/2022]
Abstract
The eye lens protein γD-crystallin contributes to cataract formation in the lens. In vitro experiments show that γD-crystallin has a high propensity to form amyloid fibers when denatured, and that denaturation by acid or UV-B photodamage results in its C-terminal domain forming the β-sheet core of amyloid fibers. Here, we show that thermal denaturation results in sheet-like aggregates that contain cross-linked oligomers of the protein, according to transmission electron microscopy and SDS-PAGE. We use two-dimensional infrared spectroscopy to show that these aggregates have an amyloid-like secondary structure with extended β-sheets, and use isotope dilution experiments to show that each protein contributes approximately one β-strand to each β-sheet in the aggregates. Using segmental (13) C labeling, we show that the organization of the protein's two domains in thermally induced aggregates results in a previously unobserved structure in which both the N-terminal and C-terminal domains contribute to β-sheets. We propose a model for the structural organization of the aggregates and attribute the recruitment of the N-terminal domain into the fiber structure to intermolecular cross linking.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | | | | |
Collapse
|