1
|
Sookai S, Perumal S, Kaur M, Munro OQ. Pt(II) Bis(pyrrole-imine) complexes: Luminescent probes and cytotoxicity in MCF-7 cells†. J Inorg Biochem 2024; 258:112617. [PMID: 38805758 DOI: 10.1016/j.jinorgbio.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Four Pt(II) bis(pyrrole-imine) Schiff base chelates (1-4) were synthesised by previously reported methods, through a condensation reaction, and the novel crystal structure of 2,2'-{propane-1,3-diylbis[nitrilo(E)methylylidene]}bis(pyrrol-1-ido)platinum(II) (1) was obtained. Pt(II) complexes 1-4 exhibited phosphorescence, with increased luminescence in anaerobic solvents or when bound to human serum albumin (HSA). One of the complexes shows a 15.6-fold increase in quantum yield when bound to HSA and could be used to detect HSA concentrations as low as 5 nM. Pt(II) complexes 1-3 was investigated as potential theranostic agents in MCF-7 breast cancer cells, but only complex 3 exhibited cytotoxicity when irradiated with UV light (λ355nmExcitation). Interestingly, the cytotoxicity of complex 1 was unresponsive to UV light irradiation. This indicates that only complex 3 can be considered a potential photosensitising agent.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
| | - Shanen Perumal
- School of Molecular and Cell Biology, University of Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Vinck R, Karges J, Tharaud M, Cariou K, Gasser G. Physical, spectroscopic, and biological properties of ruthenium and osmium photosensitizers bearing diversely substituted 4,4'-di(styryl)-2,2'-bipyridine ligands. Dalton Trans 2021; 50:14629-14639. [PMID: 34581373 DOI: 10.1039/d1dt02083h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capitalising on the previous identification of a distyryl coordinated Ru(II) polypyridine complex as a promising photosensitizer for photodynamic therapy, eight new complexes were synthesized by modifications of the ligands or by changing the metal coordinated. We report in this work the effects of these modifications on the physical, spectroscopic, and biological properties of the synthesized complexes. Subtle structural modifications of the distyryl ligand only had a moderate effect on the corresponding complexes' visible light absorption and singlet oxygen quantum yield. These modifications however had a significant effect on the lipophilicity, the cellular uptake and the phototoxicity of the complexes. Although the lipophilicity of the complexes had a somewhat expected effect on their cellular uptake, this last parameter could not be directly correlated to their phototoxicity, revealing other underlying phenomena. Overall, this work allowed identification of two promising ruthenium complexes as photosensitisers for photodynamic therapy and provides some guidance on how to design better photosensitizers.
Collapse
Affiliation(s)
- Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Mickaël Tharaud
- Institut de Physique du Globe de Paris, Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, 75005 Paris, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
3
|
Schneider KRA, Chettri A, Cole HD, Reglinski K, Brückmann J, Roque JA, Stumper A, Nauroozi D, Schmid S, Lagerholm CB, Rau S, Bäuerle P, Eggeling C, Cameron CG, McFarland SA, Dietzek B. Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand. Chemistry 2020; 26:14844-14851. [PMID: 32761643 PMCID: PMC7704931 DOI: 10.1002/chem.202002667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Indexed: 12/27/2022]
Abstract
This contribution describes the excited-state properties of an Osmium-complex when taken up into human cells. The complex 1 [Os(bpy)2 (IP-4T)](PF6 )2 with bpy=2,2'-bipyridine and IP-4T=2-{5'-[3',4'-diethyl-(2,2'-bithien-5-yl)]-3,4-diethyl-2,2'-bithiophene}imidazo[4,5-f][1,10]phenanthroline) can be discussed as a candidate for photodynamic therapy in the biological red/NIR window. The complex is taken up by MCF7 cells and localizes rather homogeneously within in the cytoplasm. To detail the sub-ns photophysics of 1, comparative transient absorption measurements were carried out in different solvents to derive a model of the photoinduced processes. Key to rationalize the excited-state relaxation is a long-lived 3 ILCT state associated with the oligothiophene chain. This model was then tested with the complex internalized into MCF7 cells, since the intracellular environment has long been suspected to take big influence on the excited state properties. In our study of 1 in cells, we were able to show that, though the overall model remained the same, the excited-state dynamics are affected strongly by the intracellular environment. Our study represents the first in depth correlation towards ex-vivo and in vivo ultrafast spectroscopy for a possible photodrug.
Collapse
Affiliation(s)
- Kilian R. A. Schneider
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller-University JenaHelmholtzweg 407743JenaGermany
| | - Avinash Chettri
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller-University JenaHelmholtzweg 407743JenaGermany
| | - Houston D. Cole
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTX76019-0065USA
| | - Katharina Reglinski
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Applied Optic and BiophysicsFriedrich-Schiller University JenaMax-Wien-Platz 107743JenaGermany
- University Hospital JenaBachstraße 1807743JenaGermany
| | - Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - John A. Roque
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTX76019-0065USA
- Department of Chemistry and BiochemistryThe University of North Carolina at GreensboroGreensboroNorth Carolina27402USA
| | - Anne Stumper
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sylvia Schmid
- Institute of Organic Chemistry II and Advanced MaterialsUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | | | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced MaterialsUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christian Eggeling
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Applied Optic and BiophysicsFriedrich-Schiller University JenaMax-Wien-Platz 107743JenaGermany
- <MRC Human Immunology Unit & Wolfson Imaging Center OxfordHeadley WayOxfordOX3 9DSUK
| | - Colin G. Cameron
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTX76019-0065USA
| | - Sherri A. McFarland
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTX76019-0065USA
| | - Benjamin Dietzek
- Department Functional Interfaces (K.R.A.S., A.C., B.D.)Department Biophysical Imaging (K.R., C.E.)Leibniz Institute of Photonic Technology (IPHT) e. V.Albert-Einstein-Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller-University JenaHelmholtzweg 407743JenaGermany
| |
Collapse
|
4
|
Malcomson T, Paterson MJ. Theoretical determination of two-photon absorption in biologically relevant pterin derivatives. Photochem Photobiol Sci 2020; 19:1538-1547. [PMID: 33029609 DOI: 10.1039/d0pp00255k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Given the prevalence of fluorescence spectroscopy in biological systems, and the prevalence of pterin derivatives throughout biological systems, presented here is an assessment of the two-photon absorption spectroscopy as it applies to a range of the most commonly studied pterin derivatives. QR-CAMB3LYP//ccpVTZ calculations suggest that the use of two-photon spectroscopic methods would enable a more capable differentiation between closely related derivatives in comparison to the one-photon spectra, which show minimal qualitative deviation. Study of short tail derivatives shows that, in most cases, two-photon accessible states solely involve the π* LUMO as the particle orbital, with biopterin, neopterin, and 6-(hydroxymethyl)pterin presenting exceptional potential for targetting. Investigation of derivatives in which the tail contains an aromatic ring resulted in the observation of a series of two-photon accessible states involving charge transfer from the tail to the pterin moiety, the cross sections of which are highly dependent on the adoption of a planar geometry. The observation of these states presents a novel method for tracking the substitution of biologically important molecules such as folic acid and 5-methenyltetrahydrofolylpolyglutamate.
Collapse
Affiliation(s)
- Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Martin J Paterson
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
5
|
Roque JA, Barrett PC, Cole HD, Lifshits LM, Shi G, Monro S, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy. Chem Sci 2020; 11:9784-9806. [PMID: 33738085 PMCID: PMC7953430 DOI: 10.1039/d0sc03008b] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia presents a two-fold challenge in the treatment of cancer, as low oxygen conditions induce biological changes that make malignant tissues simultaneously more aggressive and less susceptible to standard chemotherapy. This paper reports the first metal-based photosensitizer that approaches the ideal properties for a phototherapy agent. The Os(phen)2-based scaffold was combined with a series of IP-nT ligands, where phen = 1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings. Os-4T (n = 4) emerged as the most promising complex in the series, with picomolar activity and a phototherapeutic index (PI) exceeding 106 in normoxia. The photosensitizer exhibited an unprecedented PI > 90 (EC50 = 0.651 μM) in hypoxia (1% O2) with visible and green light, and a PI > 70 with red light. Os-4T was also active with 733 nm near-infrared light (EC50 = 0.803 μM, PI = 77) under normoxia. Both computation and spectroscopic studies confirmed a switch in the nature of the lowest-lying triplet excited state from triplet metal-to-ligand charge transfer (3MLCT) to intraligand charge transfer (3ILCT) at n = 3, with a lower energy and longer lifetime for n = 4. All compounds in the series were relatively nontoxic in the dark but became increasingly phototoxic with additional thiophenes. These normoxic and hypoxic activities are the largest reported to date, demonstrating the utility of osmium for phototherapy applications. Moreover, Os-4T had a maximum tolerated dose (MTD) in mice that was >200 mg kg-1, which positions this photosensitizer as an excellent candidate for in vivo applications.
Collapse
Affiliation(s)
- John A Roque
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Patrick C Barrett
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
| | - Houston D Cole
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Liubov M Lifshits
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Ge Shi
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| | - Susan Monro
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| | - David von Dohlen
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
| | - Susy Kim
- Department of Cancer Biology , Wake Forest School of Medicine , Winston Salem , NC , 27157, USA
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , Arcavacata di Rende , 87036 Italy .
| | - Gagan Deep
- Department of Cancer Biology , Wake Forest School of Medicine , Winston Salem , NC , 27157, USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Marta E Alberto
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , Arcavacata di Rende , 87036 Italy .
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| |
Collapse
|
6
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Mayers JM, Larsen RW. Modulation of Osmium(II) Tris(2,2'-bipyridine) Photophysics through Encapsulation within Zinc(II) Trimesic Acid Metal Organic Frameworks. Inorg Chem 2020; 59:7761-7767. [PMID: 32421317 DOI: 10.1021/acs.inorgchem.0c00807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Os(II) tris(2,2'-bipyridine) (OsBpy) complex exhibits optical properties that are particularly attractive for light harvesting systems due to the broad absorption spectrum extending throughout the solar spectrum. However, the relatively short lifetime of the triplet metal to ligand charge transfer state (3MLCT) relative to the related Ru(II)tris(2,2'-bipyridine) (RuBpy) has limited applications. Here, the encapsulation of OsBpy within two distinct Zn(II)-trimesic acid MOFs, HKUST-1(Zn) and USF-2 is demonstrated in an effort to extend the 3MLCT lifetime. Encapsulation results in a hypsochromatic shift of the steady-state emission band in both frameworks resulting from a destabilization of the 3MLCT. The encapsulated OsBpy also exhibits extended emission lifetimes in both HKUST-1(Zn) (104 ns in MOF vs 50 ns in methanol) and USF-2 (81 ns in MOF vs 50 ns in methanol) arising from changes in the nonradiative decay constants in both systems. The data are also consistent with vibronic perturbations involved in mixing between higher energy 3MLCT* and ligand field states.
Collapse
Affiliation(s)
- Jacob M Mayers
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Randy W Larsen
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
8
|
Gkika KS, Byrne A, Keyes TE. Mitochondrial targeted osmium polypyridyl probe shows concentration dependent uptake, localisation and mechanism of cell death. Dalton Trans 2020; 48:17461-17471. [PMID: 31513202 DOI: 10.1039/c9dt02967b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A symmetric osmium(ii) [bis-(4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine)] was prepared and conjugated to two mitochondrial-targeting peptide sequences; FrFKFrFK (r = d-arginine). The parent and conjugate complexes showed strong near infra-red emission centred at λmax 745 nm that was modestly oxygen dependent in the case of the parent and oxygen independent in the case of the conjugate, attributed in the latter case, surprisingly, to a shorter emission lifetime of the conjugate compared to the parent. Confocal fluorescence imaging of sub-live HeLa and MCF 7 cells showed the parent complex was cell impermeable whereas the conjugate was rapidly internalised into the cell and distributed in a concentration dependent manner. At concentrations below approximately 30 μmol, the conjugate localised to the mitochondria of both cell types where it was observed to trigger apoptosis induced by the collapse of the mitochondrial membrane potential (MPP). At concentrations exceeding 30 μmol the conjugate was similarly internalised rapidly but distributed throughout the cell, including to the nucleus and nucleolus. At these concentrations, it was observed to precipitate a caspase-dependent apoptotic pathway. The combination of concentration dependent organelle targeting, NIR emission coincident with the biological window, and distribution dependent cytotoxicity offers an interesting approach to theranostics with the possibility of eliciting site dependent therapeutic effect whilst monitoring the therapeutic effect with luminescence imaging.
Collapse
Affiliation(s)
- Karmel Sofia Gkika
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | |
Collapse
|
9
|
Ge C, Zhu J, Ouyang A, Lu N, Wang Y, Zhang Q, Zhang P. Near-infrared phosphorescent terpyridine osmium(ii) photosensitizer complexes for photodynamic and photooxidation therapy. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00846j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NIR phosphorescent terpyridine Os(ii) complexes can produce singlet oxygen and oxidize NADH under both blue and red light irradiation.
Collapse
Affiliation(s)
- Chen Ge
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Jiayi Zhu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Nong Lu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yi Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
10
|
Omar SAE, Scattergood PA, McKenzie LK, Jones C, Patmore NJ, Meijer AJHM, Weinstein JA, Rice CR, Bryant HE, Elliott PIP. Photophysical and Cellular Imaging Studies of Brightly Luminescent Osmium(II) Pyridyltriazole Complexes. Inorg Chem 2018; 57:13201-13212. [PMID: 30351084 DOI: 10.1021/acs.inorgchem.8b01627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The series of complexes [Os(bpy)3- n(pytz) n][PF6]2 (bpy = 2,2'-bipyridyl, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, 1 n = 0, 2 n = 1, 3 n = 2, 4 n = 3) were prepared and characterized and are rare examples of luminescent 1,2,3-triazole-based osmium(II) complexes. For 3 we present an attractive and particularly mild preparative route via an osmium(II) η6-arene precursor circumventing the harsh conditions that are usually required. Because of the high spin-orbit coupling constant associated with the Os(II) center the absorption spectra of the complexes all display absorption bands of appreciable intensity in the range of 500-700 nm corresponding to spin-forbidden ground-state-to-3MLCT transitions (MLCT = metal-to-ligand charge transfer), which occur at significantly lower energies than the corresponding spin-allowed 1MLCT transitions. The homoleptic complex 4 is a bright emitter (λmaxem = 614 nm) with a relatively high quantum yield of emission of ∼40% in deoxygenated acetonitrile solutions at room temperature. Water-soluble chloride salts of 1-4 were also prepared, all of which remain emissive in aerated aqueous solutions at room temperature. The complexes were investigated for their potential as phosphorescent cellular imaging agents, whereby efficient excitation into the 3MLCT absorption bands at the red side of the visible range circumvents autofluorescence from biological specimens, which do not absorb in this region of the spectrum. Confocal microscopy reveals 4 to be readily taken up by cancer cell lines (HeLa and EJ) with apparent lysosomal and endosomal localization, while toxicity assays reveal that the compounds have low dark and light toxicity. These complexes therefore provide an excellent platform for the development of efficient luminescent cellular imaging agents with advantageous photophysical properties that enable excitation and emission in the biologically transparent region of the optical spectrum.
Collapse
Affiliation(s)
| | | | - Luke K McKenzie
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism , University of Sheffield , Beech Hill Road , Sheffield S10 2RX , U.K
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield S3 7HF , U.K
| | - Callum Jones
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism , University of Sheffield , Beech Hill Road , Sheffield S10 2RX , U.K
| | | | - Anthony J H M Meijer
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield S3 7HF , U.K
| | - Julia A Weinstein
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield S3 7HF , U.K
| | | | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism , University of Sheffield , Beech Hill Road , Sheffield S10 2RX , U.K
| | | |
Collapse
|
11
|
Ge C, Huang H, Wang Y, Zhao H, Zhang P, Zhang Q. Near-Infrared Luminescent Osmium(II) Complexes with an Intrinsic RNA-Targeting Capability for Nucleolus Imaging in Living Cells. ACS APPLIED BIO MATERIALS 2018; 1:1587-1593. [DOI: 10.1021/acsabm.8b00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chen Ge
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Huaiyi Huang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Yi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Hang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| |
Collapse
|
12
|
Zhang P, Huang H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 2018; 47:14841-14854. [DOI: 10.1039/c8dt03432j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we summarize recent progress in the design and application of innovative osmium compounds as anticancer agents with diverse modes of action, as organelle-targeted imaging probes and photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
13
|
Zhang P, Chiu CKC, Huang H, Lam YPY, Habtemariam A, Malcomson T, Paterson MJ, Clarkson GJ, O'Connor PB, Chao H, Sadler PJ. Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells. Angew Chem Int Ed Engl 2017; 56:14898-14902. [PMID: 29047228 PMCID: PMC5698709 DOI: 10.1002/anie.201709082] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 01/12/2023]
Abstract
Strongly luminescent iridium(III) complexes, [Ir(C,N)2 (S,S)]+ (1) and [Ir(C,N)2 (O,O)] (2), containing C,N (phenylquinoline), O,O (diketonate), or S,S (dithione) chelating ligands, have been characterized by X-ray crystallography and DFT calculations. Their long phosphorescence lifetimes in living cancer cells give rise to high quantum yields for the generation of 1 O2 , with large 2-photon absorption cross-sections. 2 is nontoxic to cells, but potently cytotoxic to cancer cells upon brief irradiation with low doses of visible light, and potent at sub-micromolar doses towards 3D multicellular tumor spheroids with 2-photon red light. Photoactivation causes oxidative damage to specific histidine residues in the key proteins in aldose reductase and heat-shock protein-70 within living cancer cells. The oxidative stress induced by iridium photosensitizers during photoactivation can increase the levels of enzymes involved in the glycolytic pathway.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060P. R. China
| | | | - Huaiyi Huang
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- School of ChemistrySun Yat-Sen UniversityGuangzhou510275P. R. China
| | - Yuko P. Y. Lam
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Thomas Malcomson
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH4 4ASUK
| | | | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Hui Chao
- School of ChemistrySun Yat-Sen UniversityGuangzhou510275P. R. China
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
14
|
Zhang P, Chiu CKC, Huang H, Lam YPY, Habtemariam A, Malcomson T, Paterson MJ, Clarkson GJ, O'Connor PB, Chao H, Sadler PJ. Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pingyu Zhang
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
- College of Chemistry and Environmental Engineering; Shenzhen University; Shenzhen 518060 P. R. China
| | | | - Huaiyi Huang
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
- School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Yuko P. Y. Lam
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| | | | - Thomas Malcomson
- Institute of Chemical Sciences; Heriot-Watt University; Edinburgh EH4 4AS UK
| | - Martin J. Paterson
- Institute of Chemical Sciences; Heriot-Watt University; Edinburgh EH4 4AS UK
| | - Guy J. Clarkson
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| | | | - Hui Chao
- School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Peter J. Sadler
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| |
Collapse
|
15
|
Zhang P, Wang Y, Qiu K, Zhao Z, Hu R, He C, Zhang Q, Chao H. A NIR phosphorescent osmium(ii) complex as a lysosome tracking reagent and photodynamic therapeutic agent. Chem Commun (Camb) 2017; 53:12341-12344. [DOI: 10.1039/c7cc07776a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In comparison to a ruthenium(ii) complex, an osmium(ii) complex has great advantages of NIR phosphorescence imaging and NIR photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yi Wang
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Kangqiang Qiu
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Zhiqian Zhao
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Rentao Hu
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Chuanxin He
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qianling Zhang
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Hui Chao
- Shenzhen Key Laboratory of Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|