1
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
2
|
Lee YH, Yoon AR, Yun CO, Chung KC. Dual-specificity kinase DYRK3 phosphorylates p62 at the Thr-269 residue and promotes melanoma progression. J Biol Chem 2024; 300:107206. [PMID: 38519031 PMCID: PMC11021969 DOI: 10.1016/j.jbc.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Melanoma is a type of skin cancer that originates in melanin-producing melanocytes. It is considered a multifactorial disease caused by both genetic and environmental factors, such as UV radiation. Dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) phosphorylates many substrates involved in signaling pathways, cell survival, cell cycle control, differentiation, and neuronal development. However, little is known about the cellular function of DYRK3, one of the five members of the DYRK family. Interestingly, it was observed that the expression of DYRK3, as well as p62 (a multifunctional signaling protein), is highly enhanced in most melanoma cell lines. This study aimed to investigate whether DYRK3 interacts with p62, and how this affects melanoma progression, particularly in melanoma cell lines. We found that DYRK3 directly phosphorylates p62 at the Ser-207 and Thr-269 residue. Phosphorylation at Thr-269 of p62 by DYRK3 increased the interaction of p62 with tumor necrosis factor receptor-associated factor 6 (TRAF6), an already known activator of mammalian target of rapamycin complex 1 (mTORC1) in the mTOR-involved signaling pathways. Moreover, the phosphorylation of p62 at Thr-269 promoted the activation of mTORC1. We also found that DYRK3-mediated phosphorylation of p62 at Thr-269 enhanced the growth of melanoma cell lines and melanoma progression. Conversely, DYRK3 knockdown or blockade of p62-T269 phosphorylation inhibited melanoma growth, colony formation, and cell migration. In conclusion, we demonstrated that DYRK3 phosphorylates p62, positively modulating the p62-TRAF6-mTORC1 pathway in melanoma cells. This finding suggests that DYRK3 suppression may be a novel therapy for preventing melanoma progression by regulating the mTORC1 pathway.
Collapse
Affiliation(s)
- Ye Hyung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
3
|
Feng Q, Xu X, Zhang S. Nrf2 protein in melanoma progression, as a new means of treatment. Pigment Cell Melanoma Res 2024; 37:247-258. [PMID: 37777339 DOI: 10.1111/pcmr.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Melanoma is a potentially lethal form of skin cancer resulting from the unlimited proliferation of melanocytes. Melanocytic lineage appears to have a greater rate of reactive oxygen species (ROS) production, possibly as a result of exposure to ultraviolet (UV) light and the production of melanin. It has been established that nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a master regulator of the cellular response to oxidative stresses. Recent research has shown that the Nrf2 and its critical negative regulator Kelch-like ECH-associated protein 1 (Keap1) are misregulated in melanoma, and the Keap1-Nrf2 pathway has emerged as a promising new target for treating and preventing melanoma. In melanoma, Nrf2 may either limit tumor growth or promote its development. This review covers a wide range of topics, including the dual functions played by the Keap1-Nrf2 signaling pathway in melanoma and the most recent targeting techniques of the Nrf2.
Collapse
Affiliation(s)
- Qun Feng
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Xiaolin Xu
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Shoulin Zhang
- Nephrology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| |
Collapse
|
4
|
Ke C, Chen C, Yang M, Chen H, Li L, Ke Y. Revealing the mechanism of 755-nm long-pulsed alexandrite laser in inhibiting infantile hemangioma endothelial cells through transcriptome sequencing. Lasers Med Sci 2024; 39:37. [PMID: 38236327 PMCID: PMC10796541 DOI: 10.1007/s10103-023-03967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Laser therapy has shown promising outcomes in treating infantile hemangiomas. However, the molecular mechanisms underlying laser treatment for IH remain incompletely elucidated. This study aimed to unravel the molecular mechanisms of laser therapy in IH treatment. We evaluated the inhibitory effects of laser treatment on the proliferation and promotion of apoptosis in human hemangioma endothelial cells (HemECs) through cell counting kit-8 (CCK-8) assay, Hoechst 33342 staining, and flow cytometric analysis. Transcriptome sequencing analysis of HemECs following laser treatment revealed a significant decrease in the expression level of the GSTM5 gene. The qRT-PCR and western blot analysis also showed that GSTM5 expression in HemECs was downregulated compared to human umbilical vein endothelial cells (HUVECs), and concomitantly, the p62-Nrf2 pathway was suppressed. Using siRNA to downregulate GSTM5 expression, we observed that inhibiting GSTM5 expression could restrain cell proliferation, elevate intracellular ROS levels, and induce apoptosis in HemECs. Furthermore, upon inhibition of the p62-Nrf2 pathway using p62-specific siRNA, a significant decrease in GSTM5 expression and an elevation in intracellular ROS levels were noted in laser-treated HemECs. These findings suggested that laser treatment may operate by inhibiting the p62-Nrf2 pathway, thereby downregulating GSTM5 expression, elevating ROS levels, and consequently inducing apoptosis in HemECs.
Collapse
Affiliation(s)
- Chen Ke
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, 325000, Zhejiang, China
| | - Changhan Chen
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Ming Yang
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Hao Chen
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Liqun Li
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, 325000, Zhejiang, China.
| | - Youhui Ke
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China.
- Wenzhou Key Laboratory of Laser Cosmetology, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
5
|
Taskaeva YS, Shatruk AY, Lomakin AI, Bgatova NP, Fursov SA. Assessment of Autophagy in Tumor Cells of Human Skin Melanoma of Different Stages. Bull Exp Biol Med 2024; 176:376-381. [PMID: 38340197 DOI: 10.1007/s10517-024-06027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 02/12/2024]
Abstract
High levels of autophagy can increase the viability of tumor cells as well as their resistance to chemotherapy. Evaluation of the dynamics of autophagy processes at different stages of carcinogenesis can extend our understanding of melanoma pathogenesis to develop new therapeutic approaches. We performed a comparative study of tumor cell autophagy in stages II and III human skin melanoma. Tumor cells were characterized by high content of structures associated with autophagy (autophagosomes and autolysosomes). In stage III melanoma characterized by the presence of regional metastases in the lymph nodes, tumor cells showed higher expression of the autophagy marker protein LC3beta in comparison with stage II melanoma cells, which can indicate the involvement of autophagy processes in tumor progression and the formation of metastases in the lymph nodes.
Collapse
Affiliation(s)
- Yu S Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - A Yu Shatruk
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A I Lomakin
- Novosibirsk Regional Clinical Oncology Dispensary, Novosibirsk, Russia
| | - N P Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Fursov
- Novosibirsk Regional Clinical Oncology Dispensary, Novosibirsk, Russia
| |
Collapse
|
6
|
Malakoutikhah Z, Mohajeri Z, Dana N, Haghjooy Javanmard S. The dual role of Nrf2 in melanoma: a systematic review. BMC Mol Cell Biol 2023; 24:5. [PMID: 36747120 PMCID: PMC9900951 DOI: 10.1186/s12860-023-00466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer that originates from the malignant transformation of melanocytes. Although novel treatments have improved patient survival in melanoma, the overall prognosis remains poor. To improve current therapies and patients outcome, it is necessary to identify the influential elements in the development and progression of melanoma.Due to UV exposure and melanin synthesis, the melanocytic lineage seems to have a higher rate of ROS (reactive oxygen species) formation. Melanoma has been linked to an increased oxidative state, and all facets of melanoma pathophysiology rely on redox biology. Several redox-modulating pathways have arisen to resist oxidative stress. One of which, the Nrf2 (nuclear factor erythroid 2-related factor 2), has been recognized as a master regulator of cellular response to oxidative or electrophilic challenges. The activation of Nrf2 signaling causes a wide range of antioxidant and detoxification enzyme genes to be expressed. As a result, this transcription factor has lately received a lot of interest as a possible cancer treatment target.On the other hand, Nrf2 has been found to have a variety of activities in addition to its antioxidant abilities, constant Nrf2 activation in malignant cells may accelerate metastasis and chemoresistance. Hence, based on the cell type and context, Nrf2 has different roles in either preventing or promoting cancer. In this study, we aimed to systematically review all the studies discussing the function of Nrf2 in melanoma and the factors determining its alteration.
Collapse
Affiliation(s)
- Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Mohajeri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Zhang X, Li H, Liu C, Yuan X. Role of ROS‑mediated autophagy in melanoma (Review). Mol Med Rep 2022; 26:303. [PMID: 35946460 PMCID: PMC9434998 DOI: 10.3892/mmr.2022.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer with the poorest prognosis and its pathogenesis has yet to be fully elucidated. As key factors that regulate cellular homeostasis, both reactive oxygen species (ROS) and autophagy are involved in the development of melanoma, from melanomagenesis to progression and drug resistance. However, the interaction between ROS and autophagy in the etiology and treatment of melanoma is not well characterized. The present review examined the production of ROS and the role of oxidative stress in melanoma, and summarized the role of ROS‑mediated autophagy in melanomagenesis and melanoma cell fate decision following treatment with various anticancer drugs. The present findings may lead to a better understanding of the pathogenesis and progression of melanoma, and suggest promising treatment options for this disease.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Huaijun Li
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Chengxiang Liu
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xingxing Yuan
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
8
|
Pourzand C, Albieri-Borges A, Raczek NN. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel) 2022; 11:471. [PMID: 35326121 PMCID: PMC8944509 DOI: 10.3390/antiox11030471] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Reactive oxygen species (ROS) are necessary for normal cell signaling and the antimicrobial defense of the skin. However excess production of ROS can disrupt the cellular redox balance and overwhelm the cellular antioxidant (AO) capacity, leading to oxidative stress. In the skin, oxidative stress plays a key role in driving both extrinsic and intrinsic aging. Sunlight exposure has also been a major contributor to extrinsic photoaging of the skin as its oxidising components disrupt both redox- and iron-homeostasis, promoting oxidative damage to skin cells and tissue constituents. Upon oxidative insults, the interplay between excess accumulation of ROS and redox-active labile iron (LI) and its detrimental consequences to the skin are often overlooked. In this review we have revisited the oxidative mechanisms underlying skin damage and aging by focussing on the concerted action of ROS and redox-active LI in the initiation and progression of intrinsic and extrinsic skin aging processes. Based on these, we propose to redefine the selection criteria for skin antiaging and photoprotective ingredients to include natural antioxidants (AOs) exhibiting robust redox-balancing and/or iron-chelating properties. This would promote the concept of natural-based or bio-inspired bifunctional anti-aging and photoprotective ingredients for skincare and sunscreen formulations with both AO and iron-chelating properties.
Collapse
Affiliation(s)
- Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Andrea Albieri-Borges
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| | - Nico N. Raczek
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| |
Collapse
|
9
|
Catalani E, Giovarelli M, Zecchini S, Perrotta C, Cervia D. Oxidative Stress and Autophagy as Key Targets in Melanoma Cell Fate. Cancers (Basel) 2021; 13:cancers13225791. [PMID: 34830947 PMCID: PMC8616245 DOI: 10.3390/cancers13225791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
Melanoma originates from the malignant transformation of melanocytes and is one of the most aggressive forms of cancer. The recent approval of several drugs has increased the chance of survival although a significant subset of patients with metastatic melanoma do not show a long-lasting response to these treatments. The complex cross-talk between oxidative stress and the catabolic process autophagy seems to play a central role in all aspects of melanoma pathophysiology, from initiation to progression and metastasis, including drug resistance. However, determining the fine role of autophagy in cancer death and in response to redox disruption is still a fundamental challenge in order to advance both basic and translational aspects of this field. In order to summarize the interactions among reactive oxygen and nitrogen species, autophagy machinery and proliferation/growth/death/apoptosis/survival, we provide here a narrative review of the preclinical evidence for drugs/treatments that modulate oxidative stress and autophagy in melanoma cells. The significance and the potential for pharmacological targeting (also through multiple and combination approaches) of these two different events, which can contribute independently or simultaneously to the fate of melanoma, may help to define new processes and their interconnections underlying skin cancer biology and unravel new reliable approaches.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
- Correspondence: (C.P.); (D.C.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|
10
|
Ryšavá A, Vostálová J, Rajnochová Svobodová A. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int J Radiat Biol 2021; 97:1383-1403. [PMID: 34338112 DOI: 10.1080/09553002.2021.1962566] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix metalloproteinase, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoaing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects. CONCLUSIONS This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signaling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activation and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in the skin needs to be performed carefully.
Collapse
Affiliation(s)
- Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
11
|
Jeong D, Qomaladewi NP, Lee J, Park SH, Cho JY. The Role of Autophagy in Skin Fibroblasts, Keratinocytes, Melanocytes, and Epidermal Stem Cells. J Invest Dermatol 2021; 140:1691-1697. [PMID: 32800183 DOI: 10.1016/j.jid.2019.11.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022]
Abstract
Human skin acts as a barrier to protect our bodies from UV rays and external pathogens and to prevent water loss. Phenotypes of aging, or natural aging due to chronic damage, include wrinkles and the reduction of skin thickness that occur because of a loss of skin cell function. The dysregulation of autophagy, a lysosome-related degradation pathway, can lead to cell senescence, cancer, and various human diseases due to abnormal cellular homeostasis. Here, we discuss the roles and molecular mechanisms of autophagy involved in the anti-aging effects of autophagy and the relationship between autophagy and aging in skin cells.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | | | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
12
|
Ge X, Niture S, Lin M, Cagle P, Li PA, Kumar D. MicroRNA-205-5p inhibits skin cancer cell proliferation and increase drug sensitivity by targeting TNFAIP8. Sci Rep 2021; 11:5660. [PMID: 33707587 PMCID: PMC7952414 DOI: 10.1038/s41598-021-85097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which regulates tumor growth and survival. Our goal is to delineate the detailed oncogenic role of TNFAIP8 in skin cancer development and progression. Here we demonstrated that higher expression of TNFAIP8 is associated with basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma development in patient tissues. Induction of TNFAIP8 expression by TNFα or by ectopic expression of TNFAIP8 in SCC or melanoma cell lines resulted in increased cell growth/proliferation. Conversely, silencing of TNFAIP8 decreased cell survival/cell migration in skin cancer cells. We also showed that miR-205-5p targets the 3'UTR of TNFAIP8 and inhibits TNFAIP8 expression. Moreover, miR-205-5p downregulates TNFAIP8 mediated cellular autophagy, increased sensitivity towards the B-RAFV600E mutant kinase inhibitor vemurafenib, and induced cell apoptosis in melanoma cells. Collectively our data indicate that miR-205-5p acts as a tumor suppressor in skin cancer by targeting TNFAIP8.
Collapse
Affiliation(s)
- Xinhong Ge
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.,Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| | - Minghui Lin
- Department of Respiratory Diseases, The Forth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750021, Ningxia Hui Autonomous Region, China
| | - Patrice Cagle
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Bio-Manufacturing Research Institute and Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| |
Collapse
|
13
|
Role of Pirin, an Oxidative Stress Sensor Protein, in Epithelial Carcinogenesis. BIOLOGY 2021; 10:biology10020116. [PMID: 33557375 PMCID: PMC7915911 DOI: 10.3390/biology10020116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Pirin is an oxidative stress (OS) sensor belonging to the functionally diverse cupin superfamily of proteins. Pirin is a suggested quercetinase and transcriptional activator of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Its biological role in cancer development remains a novel area of study. This review presents accumulating evidence on the contribution of Pirin in epithelial cancers, involved signaling pathways, and as a suggested therapeutic target. Finally, we propose a model in which Pirin is upregulated by physical, chemical or biological factors involved in OS and cancer development.
Collapse
|
14
|
Friedmann Angeli JP, Meierjohann S. NRF2-dependent stress defense in tumor antioxidant control and immune evasion. Pigment Cell Melanoma Res 2020; 34:268-279. [PMID: 33205526 DOI: 10.1111/pcmr.12946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
The transcription factor NRF2 is known as the master regulator of the oxidative stress response. Tumor entities presenting oncogenic activation of NRF2, such as lung adenocarcinoma, are associated with drug resistance, and accumulating evidence demonstrates its involvement in immune evasion. In other cancer types, the KEAP1/NRF2 pathway is not commonly mutated, but NRF2 is activated by other means such as radiation, oncogenic activity, cytokines, or other pro-oxidant triggers characteristic of the tumor niche. The obvious effect of stress-activated NRF2 is the protection from oxidative or electrophilic damage and the adaptation of the tumor metabolism to changing conditions. However, data from melanoma also reveal a role of NRF2 in modulating differentiation and suppressing anti-tumor immunity. This review summarizes the function of NRF2 in this tumor entity and discusses the implications for current tumor therapies.
Collapse
Affiliation(s)
- José Pedro Friedmann Angeli
- Rudolf-Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Svenja Meierjohann
- Institute of Pathology, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Broggi G, Ieni A, Russo D, Varricchio S, Puzzo L, Russo A, Reibaldi M, Longo A, Tuccari G, Staibano S, Caltabiano R. The Macro-Autophagy-Related Protein Beclin-1 Immunohistochemical Expression Correlates With Tumor Cell Type and Clinical Behavior of Uveal Melanoma. Front Oncol 2020; 10:589849. [PMID: 33330070 PMCID: PMC7714947 DOI: 10.3389/fonc.2020.589849] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Uveal melanoma, in spite of its rarity, represents the most common primitive intraocular malignant neoplasm of the adults; it affects choroid, ciliary bodied and iris and remains clinically silent for a long time, being accidentally discovered by routine ophthalmic exams. Prognosis of uveal melanoma is poor and frequently characterized by liver metastases, within 10-15 years from diagnosis. Autophagy is a multi-step catabolic process by which cells remove damaged organelles and proteins and recycle nutrients. It has been hypothesized that in early stages of tumorigenesis autophagy has a tumor suppressor role while, in more advanced stages, it may represent a survival mechanism of neoplastic cells in response to stress. Several proteins related to autophagy cascade have been investigated in numerous subtypes of human cancer, with overall controversal results. In this paper we studied the immunohistochemical expression of 3 autophagy related proteins (Beclin-1, p62 and ATG7) in a cohort of 85 primary uveal melanoma treated by primary enucleation (39 with metastasis and 46 non metastatic) and correlated their expression with clinico-pathological parameters and blood vascular microvessel density, in order to investigate the potential prognostic role of autophagy in this rare neoplasm. We found that high immunohistochemical levels of Beclin-1 correlated with a lower risk of metastasis and higher disease-free survival times, indicating a positive prognostic role for Beclin-1 in uveal melanoma. No statistically significative differences regarding the expression of ATG7 and p62 between metastatic and non metastatic patients was detected.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Section of Anatomic Pathology, Department Gian Filippo Ingrassia, University of Catania, Catania, Italy
| | - Antonio Ieni
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Daniela Russo
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Varricchio
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Lidia Puzzo
- Section of Anatomic Pathology, Department Gian Filippo Ingrassia, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, Catania, Italy.,Department of Surgical Science, Eye Clinic, University of Torino, Torino, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Giovanni Tuccari
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Stefania Staibano
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Rosario Caltabiano
- Section of Anatomic Pathology, Department Gian Filippo Ingrassia, University of Catania, Catania, Italy
| |
Collapse
|
16
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59:101036. [PMID: 32105850 DOI: 10.1016/j.arr.2020.101036] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Aging is a major cause of many degenerative diseases. The most intuitive consequence of aging is mainly manifested on the skin, resulting in cumulative changes in skin structure, function and appearance, such as increased wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation of the skin. Unlike other organs of the human body, skin is not only inevitably affected by the intrinsic aging process, but also affected by various extrinsic environmental factors to accelerate aging, especially ultraviolet (UV) radiation. Skin aging is a highly complex and not fully understood process, and the lack of universal biomarkers for the definitive detection and evaluation of aging is also a major research challenge. Oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to lipid, protein, nucleic acid and organelle damage, thus leading to the occurrence of cellular senescence, which is one of the core mechanisms mediating skin aging. Autophagy can maintain cellular homeostasis when faced with different stress conditions and is one of the survival mechanisms of cell resistance to intrinsic and extrinsic stress. Autophagy and aging have many features in common and may be associated with skin aging mediated by different factors. Here, we summarize the changes and biomarkers of skin aging, and discuss the effects of oxidative stress and autophagy on skin aging.
Collapse
|
18
|
Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci 2020; 21:E2980. [PMID: 32340261 PMCID: PMC7215321 DOI: 10.3390/ijms21082980] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Resisting cell death is a hallmark of cancer. Disturbances in the execution of cell death programs promote carcinogenesis and survival of cancer cells under unfavorable conditions, including exposition to anti-cancer therapies. Specific modalities of regulated cell death (RCD) have been classified based on different criteria, including morphological features, biochemical alterations and immunological consequences. Although melanoma cells are broadly equipped with the anti-apoptotic machinery and recurrent genetic alterations in the components of the RAS/RAF/MEK/ERK signaling markedly contribute to the pro-survival phenotype of melanoma, the roles of autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos have recently gained great interest. These signaling cascades are involved in melanoma cell response and resistance to the therapeutics used in the clinic, including inhibitors of BRAFmut and MEK1/2, and immunotherapy. In addition, the relationships between sensitivity to non-apoptotic cell death routes and specific cell phenotypes have been demonstrated, suggesting that plasticity of melanoma cells can be exploited to modulate response of these cells to different cell death stimuli. In this review, the current knowledge on the non-apoptotic cell death signaling pathways in melanoma cell biology and response to anti-cancer drugs has been discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
19
|
Jiang G, Liang X, Huang Y, Lan Z, Zhang Z, Su Z, Fang Z, Lai Y, Yao W, Liu T, Hu L, Wang F, Huang H, Liu L, Jiang X. p62 promotes proliferation, apoptosis‑resistance and invasion of prostate cancer cells through the Keap1/Nrf2/ARE axis. Oncol Rep 2020; 43:1547-1557. [PMID: 32323805 PMCID: PMC7107779 DOI: 10.3892/or.2020.7527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer poses a public health threat to hundreds of people around the world. p62 has been identified as a tumor suppressor, however, the mechanism by which p62 promotes prostate cancer remains poorly understood. The present study aimed to investigate whether p62 promotes proliferation, apoptosis resistance and invasion of prostate cancer cells via the Kelch-like ECH-associated protein 1/nuclear factor erytheroid-derived 2-like 2/antioxidant response element (Keap1/Nrf2/ARE) axis. Immunohistochemical staining and immunoblotting were performed to determine the protein levels. Rates of proliferation, invasion and apoptosis of prostate cancer cells were assessed using an RTCA system and flow cytometric assays. Levels of reactive oxygen species (ROS) were assessed using Cell ROX Orange reagent and mRNA levels of Nrf2 target genes were detected by qRT-PCR. It was revealed that p62 increased the levels and activities of Nrf2 by suppressing Keap1-mediated proteasomal degradation in prostate cancer cells and tissues, and high levels of p62 promoted growth of prostate cancer through the Keap1/Nrf2/ARE system. Silencing of Nrf2 in DU145 cells overexpressing p62 led to decreases in the rate of cell proliferation and invasion and an increase in the rate of cell apoptosis. p62 activated the Nrf2 pathway, promoted the transcription of Nrf2-mediated target genes and suppressed ROS in prostate cancer. Therefore, p62 promoted the development of prostate cancer by activating the Keap1/Nrf2/ARE pathway and decreasing p62 may provide a new strategy to ameliorate tumor aggressiveness and suppress tumorigenesis to improve clinical outcomes.
Collapse
Affiliation(s)
- Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xue Liang
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ziquan Lan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhiming Zhang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhengming Su
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhiyuan Fang
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yuxiong Lai
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Wenxia Yao
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ting Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - La Hu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Fen Wang
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Hai Huang
- Department of Urology, The Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou 510120, P.R. China
| | - Leyuan Liu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
20
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Eckhart L, Tschachler E, Gruber F. Autophagic Control of Skin Aging. Front Cell Dev Biol 2019; 7:143. [PMID: 31417903 PMCID: PMC6682604 DOI: 10.3389/fcell.2019.00143] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The skin forms the barrier to the environment. Maintenance of this barrier during aging requires orchestrated responses to variable types of stress, the continuous renewal of the epithelial compartment, and the homeostasis of long-lived cell types. Recent experimental evidence suggests that autophagy is critically involved in skin homeostasis and skin aging is associated with and partially caused by defects of autophagy. In the outer skin epithelium, autophagy is constitutively active during cornification of keratinocytes and increases the resistance to environmental stress. Experimental suppression of autophagy in the absence of stress is tolerated by the rapidly renewing epidermal epithelium, whereas long-lived skin cells such as melanocytes, Merkel cells and secretory cells of sweat glands depend on autophagy for cellular homeostasis and normal execution of their functions during aging. Yet other important roles of autophagy have been identified in the dermis where senescence of mesenchymal cells and alterations of the extracellular matrix (ECM) are hallmarks of aging. Here, we review the evidence for cell type-specific roles of autophagy in the skin and their differential contributions to aging.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
22
|
Schwertheim S, Westerwick D, Jastrow H, Theurer S, Schaefer CM, Kälsch J, Möllmann D, Schlattjan M, Wedemeyer H, Schmid KW, Baba HA. Intranuclear inclusions in hepatocellular carcinoma contain autophagy-associated proteins and correlate with prolonged survival. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:164-176. [PMID: 30859721 PMCID: PMC6648385 DOI: 10.1002/cjp2.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
For decades, intranuclear inclusions in many normal and neoplastic cells have been considered to be mere invaginations of cytoplasm into the nucleus without any notable function or influence on disease. We investigated such inclusions in 75 specimens of hepatocellular carcinoma (HCC). In this context we demonstrate that these inclusions are true inclusions, completely closed and delimited by the nuclear membrane, containing degenerate cell organelles and lysosomal proteins. Moreover, their occurrence was positively associated with patient survival but not with tumour grade or stage. In a standardised area a mean of 124 inclusions per specimen was present in the tumorous liver tissue in contrast to 5 inclusions in the non‐tumorous adjacent section and 89% of all scrutinised HCC showed at least one membrane‐bound nuclear inclusion. Ultrastructural characterisation by transmission electron microscopy revealed degenerative materials such as residues of lysosomes, endoplasmic reticulum and Golgi apparatus within the inclusions. Due to the fact that the content of the inclusions appears to be more condensed than cytoplasm and contains fewer intact cell organelles, we assume that they are not mere invaginations of cytoplasm. Three dimensional (3D) reconstruction of isolated and immunofluorescence stained nuclei showed that the inclusions are completely located within the nucleus without any connection to the cytoplasm. The limiting membrane of the inclusions contained lamin B suggesting nuclear membrane origin. The content of the inclusions stained for the autophagy‐associated proteins p62, ubiquitin, LC3B, cathepsin B and cathepsin D. Triple immunofluorescence staining followed by 3D reconstruction revealed co‐localisation of p62, ubiquitin and LC3B in the same inclusion. Our observations uncover that these inclusions are real inclusions completely surrounded by the nucleus. We propose that the presence of autophagy‐associated proteins and proteases within the inclusions contribute to beneficial survival.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Institute of Anatomy, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Sarah Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph M Schaefer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dorothe Möllmann
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Schlattjan
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,West German Cancer Centre Essen (WTZE), University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Ikehata H, Yamamoto M. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicol Appl Pharmacol 2018; 360:69-77. [DOI: 10.1016/j.taap.2018.09.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
|
24
|
Sil P, Wong SW, Martinez J. More Than Skin Deep: Autophagy Is Vital for Skin Barrier Function. Front Immunol 2018; 9:1376. [PMID: 29988591 PMCID: PMC6026682 DOI: 10.3389/fimmu.2018.01376] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
The skin is a highly organized first line of defense that stretches up to 1.8 m2 and is home to more than a million commensal bacteria. The microenvironment of skin is driven by factors such as pH, temperature, moisture, sebum level, oxidative stress, diet, resident immune cells, and infectious exposure. The skin has a high turnover of cells as it continually bares itself to environmental stresses. Notwithstanding these limitations, it has devised strategies to adapt as a nutrient-scarce site. To perform its protective function efficiently, it relies on mechanisms to continuously remove dead cells without alarming the immune system, actively purging the dying/senescent cells by immunotolerant efferocytosis. Both canonical (starvation-induced, reactive oxygen species, stress, and environmental insults) and non-canonical (selective) autophagy in the skin have evolved to perform astute due-diligence and housekeeping in a quiescent fashion for survival, cellular functioning, homeostasis, and immune tolerance. The autophagic “homeostatic rheostat” works tirelessly to uphold the delicate balance in immunoregulation and tolerance. If this equilibrium is upset, the immune system can wreak havoc and initiate pathogenesis. Out of all the organs, the skin remains under-studied in the context of autophagy. Here, we touch upon some of the salient features of autophagy active in the skin.
Collapse
Affiliation(s)
- Payel Sil
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|