1
|
Abbasi M, Aziz R, Rafiq MT, Bacha AUR, Ullah Z, Ghaffar A, Mustafa G, Nabi I, Hayat MT. Efficient performance of InP and InP/ZnS quantum dots for photocatalytic degradation of toxic aquatic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19986-20000. [PMID: 38368301 DOI: 10.1007/s11356-024-32479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
In recent years, the growing concern over the presence of toxic aquatic pollutants has prompted intensive research into effective and environmentally friendly remediation methods. Photocatalysis using semiconductor quantum dots (QDs) has developed as a promising technology for pollutant degradation. Among various QD materials, indium phosphide (InP) and its hybrid with zinc sulfide (ZnS) have gained considerable attention due to their unique optical and photocatalytic properties. Herein, InP and InP/ZnS QDs were employed for the removal of dyes (crystal violet, and congo red), polyaromatic hydrocarbons (pyrene, naphthalene, and phenanthrene), and pesticides (deltamethrin) in the presence of visible light. The degradation efficiencies of crystal violet (CV) and congo red (CR) were 74.54% and 88.12% with InP, and 84.53% and 91.78% with InP/ZnS, respectively, within 50 min of reaction. The InP/ZnS showed efficient performance for the removal of polyaromatic hydrocarbons (PAHs). For example, the removal percentage for naphthalene, phenanthrene, and pyrene was 99.8%, 99.6%, and 88.97% after the photocatalytic reaction. However, the removal percentage of InP/ZnS for pesticide deltamethrin was 90.2% after 90 min light irradiation. Additionally, advanced characterization techniques including UV-visible spectrophotometer (UV-Vis), photoluminescence (PL), X-ray diffractometer (XRD), energy-dispersive spectrometer (EDS) elemental mapping, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) were used to analyze the crystal structure, morphology, and purity of the fabricated materials in detail. The particle size results obtained from TEM are in the range of 2.28-4.60 nm. Both materials (InP and InP/ZnS) exhibited a spherical morphology, displaying distinct lattice fringes. XRD results of InP depicted lattice planes (111), (220), and (311) in good agreement with cubic geometry. Furthermore, the addition of dopants was discovered to enhance the thermal stability of the fabricated material. In addition, QDs exhibited efficacy in the breakdown of PAHs. The analysis of their fragmentation suggests that the primary mechanism for PAHs degradation is the phthalic acid pathway.
Collapse
Affiliation(s)
- Maryam Abbasi
- Department of Environmental Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Rukhsanda Aziz
- Environmental Science Program, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Muhammad Tariq Rafiq
- Environmental Science Program, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China.
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Abdul Ghaffar
- Isotope Application Division, PINSTECH, Nilore, Islamabad, Pakistan
| | - Ghulam Mustafa
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Iqra Nabi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
| | - Malik Tahir Hayat
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
2
|
Bibi M, Rashid J, Siddiqa A, Xu M. The mechanism and reaction kinetics of visible light active bismuth oxide deposited on titanium vanadium oxide for aqueous diclofenac photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23228-23246. [PMID: 38413524 DOI: 10.1007/s11356-024-32477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Non-uniform, non-spherical bismuth oxide deposited on titanium vanadium oxide (3%-BVT1) was successfully synthesized via co-precipitation method and assessed for visible light degradation of aqueous diclofenac. The synthesized photocatalysts were characterized using X-ray diffraction, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. Up to 80.7% diclofenac degradation was observed with a significant increment in reaction rate compared to commercially available Degussa P25 (kapp = 0.0013 → 0.0083 min-1) achieved within 3 h treatment time under optimized parameters of diclofenac concentration (10 mg L-1), catalyst loading (0.1 g L-1), and pH (5). The enhanced photocatalysis could be due to electron-hole separation and contribution of powerful oxidative species •OH > O2•- > h+ > > e-. The recyclability experiments indicate that 3%-BVT1 retained its efficiency up to 74.1% over five reaction cycles. Gas chromatography-mass spectrometry analysis indicated the formation of several transformation products during the degradation pathway. The studies of interfering ions depicted mild interference by sulfates, while interference by phosphates and nitrates was negligible during photocatalytic process, i.e., 70, 78.01, and 78.43% for the selected concentrations of 50, 25, and 40 mg L-1 as per their maximum concentrations detected in the natural wastewaters. Thus, 3%-BVT1 is a potential versatile candidate to treat various organic pollutants including pharmaceuticals.
Collapse
Affiliation(s)
- Mehmooda Bibi
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Jamshaid Rashid
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Asima Siddiqa
- National Centre for Physics, Quaid-I-Azam University Complex, Islamabad, 45320, Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| |
Collapse
|
3
|
Khanmohammadi M, Rahmani F, Rahbar Shahrouzi J, Akbari Sene R. Insightful properties-performance study of Ti-Cu-O heterojunction sonochemically embedded in mesoporous silica matrix for efficient tetracycline adsorption and photodegradation: RSM and ANN-based modeling and optimization. CHEMOSPHERE 2024; 352:141223. [PMID: 38228191 DOI: 10.1016/j.chemosphere.2024.141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
This study aims to provide a comprehensive evaluation of the photocatalytic properties and performance of the Cu-Ti-O heterojunction sonochemically embedded in the mesoporous silica matrix. Various characterization analyses and adsorption/photodegradation experiments were performed to assess the potential of the sample for tetracycline (TC) removal. The characterization results indicated that sonication contributes to better dispersion of Ti-Cu-O species, resulting in more uniform particle sizes, stronger semiconductors-silica interaction, and less agglomeration. Furthermore, sonication significantly affected the optical nanocomposite features, leading to an improvement in charge carrier separation and a decrease in the band gap of Ti-Cu-Si (S) by approximately 2.6 eV. Based on the textural results, the ultrasound microjets increased the surface area and pore volume, which facilitate mass transfer and provide suitable adsorption sites for TC molecules. Accordingly, Cu-Ti-Si (S) demonstrated higher adsorption capacity (0.051 g TC/g adsorbent) and eliminated TC significantly faster (0.0054 L.mg-1.min-1) than a non-sonicated sample during 120 min of irradiation, resulting in 2.84 times improvement in the constant rate. In addition, experimental results were accurately modeled using a central composite design in combination with response surface methodology (RSM) and artificial neural networks (ANN) to predict and optimize TC photodegradation. Both RSM and ANN models revealed excellent predictability for TC degradation efficiency, with R2 = 99.47 and 99.71%, respectively. At optimal operational conditions (CTC = 20 ppm, photocatalyst dosage = 1.15 g.L-1, pH = 9, and irradiation time = 100 min), more than 95% and 87% of TC were degraded within the UV (375 W) and simulated solar light (400 W) irradiation periods, respectively. It was observed that the Cu-Ti-Si (S) nanocomposite maintained remarkable stability after four cycles with only a negligible 3% loss of activity, owing to the superior interaction between the bimetallic heterojunction and the silica matrix.
Collapse
Affiliation(s)
- Morteza Khanmohammadi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P.O.Box 66177-15175, Sanandaj, Iran
| | - Farhad Rahmani
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P.O.Box 66177-15175, Sanandaj, Iran.
| | - Javad Rahbar Shahrouzi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Rojiar Akbari Sene
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P.O.Box 66177-15175, Sanandaj, Iran
| |
Collapse
|
4
|
Shanmugam P, Parasuraman B, Boonyuen S, Thangavelu P, AlSalhi MS, Zheng ALT, Viji A. Hydrothermal synthesis and photocatalytic application of ZnS-Ag composites based on biomass-derived carbon aerogel for the visible light degradation of methylene blue. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:92. [PMID: 38367085 DOI: 10.1007/s10653-024-01871-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.
Collapse
Affiliation(s)
- Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Balaji Parasuraman
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamilnadu, 636011, India
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Pazhanivel Thangavelu
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamilnadu, 636011, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Alvin Lim Teik Zheng
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - A Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam, Tamil Nadu, 621215, India
| |
Collapse
|
5
|
Teymourinia H, Alshamsi HA, Al-Nayili A, Gholami M. Photocatalytic degradation of chlorpyrifos using Ag nanoparticles-doped g-C 3N 5 decorated with dendritic CdS. CHEMOSPHERE 2023; 344:140325. [PMID: 37797896 DOI: 10.1016/j.chemosphere.2023.140325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
In this work, g-C3N5/CdS dendrite/AgNPs nanocomposite was synthesized using a mixed method consisting of hydrothermal, ultrasonic and chemistry reduction with sodium borohydride. The characterization of the as-prepared nanocomposite was done using infrared spectroscopy, X-ray, scanning electron microscopy, transmission electron microscopy, BET, and DRS methods was performed. The DRS results showed that the g-C3N5/CdS dendrite/AgNPs nanocomposite nanocomposite has a band gap of 1.08 eV. This band gap indicates the good capability of this nanocomposite as a photocatalyst. Accordingly, the photocatalytic degradation of chlorpyrifos (CPS) in was performed in an aqueous solution of the synthesized nanocomposite. The results showed that almost 95.3% of this poison, a concentration of 50 mg L-1 was degraded in the presence of 0.05 g L-1 of nanocomposite at pH = 5 in a 60 min. Hydroxide radicals and holes play a significant role in the photocatalytic process. The reusability of the nanocomposite with excellent performance in the degradation of photocatalytic toxins caused by the reduction in the electron-hole recombination and the high surface area of the nanocomposite are among the unique features of this work.
Collapse
Affiliation(s)
- Hakimeh Teymourinia
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791, Zanjan, Iran
| | - Hassan Abbas Alshamsi
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Abbas Al-Nayili
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sayed A, Mazrouaa AM, Mohamed MG, Abdel-Raouf MES. Green synthesis of chitosan/erythritol/graphene oxide composites for simultaneous removal of some toxic species from simulated solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25903-25919. [PMID: 36348240 PMCID: PMC9995588 DOI: 10.1007/s11356-022-23951-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
In this study, chitosan (Ch) is adapted via green methodology including sonication induced crosslinking with different weight ratios of erythritol (Er) from (Ch-Er)1 to (Ch-Er)4. The products were casted in the form of thin films. The chemical modification was proved via FTIR spectroscopy. Then, the modified products were verified via an atomic force microscopy (AFM) investigation for their topography and surface properties. The data revealed that the optimized sample was (Ch-Er)3. This sample was further modified by different weight ratios of graphene oxide 0.1, 0.2, 0.4, and 0.8 wt./wt. (symbolized as (Ch-Er)3GO1, (Ch-Er)3GO2, (Ch-Er)3GO4, and (Ch-Er)3GO8 respectively). The prepared samples were investigated by different analytical tools. Then, the adjusted sample (Ch-Er)3GO2 was irradiated by electron beam (e-beam) at 10 and 20 kGy of irradiation doses to give samples (Ch-Er)3GO2R10 and (Ch-Er)3GO2R20, respectively. The AFM data of the irradiated samples showed that the pore size decreases, and surface roughness increases at higher energy e-beam due to the formation of more crosslinking points. The optimum samples of the prepared formulations were tested as sorbent materials for simultaneous elimination of methylene blue (MB) dye and mercury cation (Hg2+) from simulated solutions. The maximum removal of both MB dye and Hg2+ cation was achieved by (Ch-Er)3GO2R10 (186.23 mg g-1 and 205 mg g-1) respectively.
Collapse
Affiliation(s)
- Asmaa Sayed
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Azza M Mazrouaa
- Polymer Lab, Department of Petrochemicals, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Manal G Mohamed
- Polymer Lab, Department of Petrochemicals, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Manar El-Sayed Abdel-Raouf
- Additives Lab, Department of Petroleum Application, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Moghaddam AA, Mohammadi L, Bazrafshan E, Batool M, Behnampour M, Baniasadi M, Mohammadi L, Zafar MN. Antibiotics sequestration using metal nanoparticles: An updated systematic review and meta-analysis. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
8
|
Li H, Liu N. Application of FeS-activated persulfate oxidation system for the degradation of tetracycline in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10745-10755. [PMID: 36085222 DOI: 10.1007/s11356-022-22966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Tetracycline (TC), an antibiotic used to treat bacterial infectious diseases, is easily transferred to environmental matrixes and then sparks environmental concerns. In this study, TC was selected as a target pollutant to investigate the degradation performance of persulfate (PS) based advanced oxidation processes (AOPs) using FeS as the activator (FeS/PS). The results showed that with optimal PS and FeS concentrations of 1 mM and a pseudo-second-order rate constant (k2) of 3.45 L mmol-1 min-1, 91.39% of TC, was effectively removed within 60 min. From the perspective of degradation rate, apart from CO32-, TC decompositions by FeS/PS were hardly disturbed by the coexistence of different concentrations of Cl-, NO3-, SO42-, and humin acid. The degradation of TC under the O2 bubbling, N2 bubbling, and light-proof conditions also had limited effects on these AOPs. In addition, FeS exhibited excellent stability and recyclability when used as a PS activator for TC removal. The PS activated by old FeS and used FeS showed nearly identical performances on TC removal compared with the fresh FeS. It is suggested that homogeneous and heterogeneous reactions are jointly responsible for TC oxidation by FeS/PS. With the contributions of the generated, highly reactive SO4-•, and, in particular, •OH, TC enabled the mineralization of inorganic products eventually. Therefore, FeS/PS is highly recommended as an alternative AOPs in the future for TC-contaminated wastewater purification.
Collapse
Affiliation(s)
- Haijun Li
- School of Chemical and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 64300, Sichuan, People's Republic of China.
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
9
|
Priyanka U, Lens PNL. Light driven Aspergillus niger-ZnS nanobiohybrids for degradation of methyl orange. CHEMOSPHERE 2022; 298:134162. [PMID: 35302000 DOI: 10.1016/j.chemosphere.2022.134162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Inorganic-microbial hybrid systems have potential to be sustainable, efficient and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with microbial cells. Here, we demonstrate light-driven photocatalytic semiconducting Aspergillus niger cells-ZnS nanoparticles for enhanced removal of the dye methyl orange. Chemically synthesized ZnS nanoparticles exhibited a zinc blende pattern in X-ray diffraction, had a dimension of 20-90 nm with a band gap (Ebg) of 3.4 eV at 1.83 × 1018 photons/second. Biologically synthesized ZnS nanoparticles of 40-90 nm showed a hexagonal pattern in the X-ray powder diffraction spectra with an Ebg 3.7 eV at 1.68 × 1018 photons/second. At a methyl orange (MO) concentration of 100 mg/L, dosage of 0.5 × 105 mol catalyst and pH 4, a 97.5% and 98% removal efficiency of MO was achieved in 90 min and 60 min for, respectively, chemically and biologically synthesized ZnS nanobiohybrids in the presence of UV-A light. The major degradation products of photocatalysis for chemically synthesized ZnS nanobiohybrids were naphtholate (C10H7O m/z 143) and hydroquinone (C9H5m/z 113). For the biologically synthesized ZnS nanobiohybrids, the degradation products were hydroquinone (C9H5m/z 113) and 2-phenylphenol (C12H10O m/z 170).
Collapse
Affiliation(s)
| | - Piet N L Lens
- National University of Ireland, University Road, Galway, Ireland.
| |
Collapse
|
10
|
Modares M, Alijani S, Nasernejad B. NOx photocatalytic degradation over ZnO–CdS heterostructure composite under visible light irradiation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04705-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Silvestri S, Stefanello N, da Silveira Salla J, Foletto EL. Photocatalytic properties of Zn2SnO4 powders prepared by different modified hydrothermal routes. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03832-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|