1
|
Zdubek A, Maliszewska I, Grabowiecka A, Kowalczyk R, Turek B. Enhancement of 5-Aminolevulinic Acid-Mediated Photodynamic Inactivation of Proteus mirabilis Using Phosphoric and Bisaminophosphinic Acids as Permeabilizing Agents. ACS OMEGA 2024; 9:48629-48641. [PMID: 39676993 PMCID: PMC11635689 DOI: 10.1021/acsomega.4c07696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024]
Abstract
The purpose of this work was to examine the effect of phosphoric and bisaminophosphinic acids on the effectiveness of photoinactivation of Proteus mirabilis with 5-aminolevulinic acid (5-ALA) as a precursor of protoporphyrin IX. Two diode lasers λ = 404 nm (radiation intensity 26 mW cm-2) and λ = 630 nm (radiation intensity 55 mW cm-2) were used as sources of light. The most effective agent was (R)-(-)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate, and a significant improvement in bactericidal effect of 5-ALA-aPDI was achieved by pretreating P. mirabilis with this compound at nontoxic concentrations of 0.368 mM. It was found that 15 min of blue light illumination was enough to achieve bacterial cell mortality of 99.999%. Photoelimination of this pathogen using red light was less effective, and the required killing effect (at least 99.99%) was not achieved until 45 min of exposure. The mechanism of increased pathogen destruction by the examined acids is multifaceted and includes not only the destabilization of the outer bacterial cell membrane by organophosphates but also an increase in the level of protoporphyrin IX in cells due to chelation of iron ions. Furthermore, a synergistic effect of intracellular photosensitizers and (R)-(-)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate acting as an additional blue/red light-induced photosensitizer cannot be excluded.
Collapse
Affiliation(s)
- Anna Zdubek
- Department
of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Irena Maliszewska
- Department
of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Kowalczyk
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Bartosz Turek
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
2
|
Gawecki R, Rawicka P, Rogalska M, Serda M, Mrozek-Wilczkiewicz A. Iron Metabolism in Aminolevulinic Acid-Photodynamic Therapy with Iron Chelators from the Thiosemicarbazone Group. Int J Mol Sci 2024; 25:10468. [PMID: 39408796 PMCID: PMC11476630 DOI: 10.3390/ijms251910468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Iron plays a crucial role in various metabolic processes. However, the impact of 5-aminolevulinic acid (ALA) in combination with iron chelators on iron metabolism and the efficacy of ALA-photodynamic therapy (PDT) remain inadequately understood. This study aimed to examine the effect of thiosemicarbazone derivatives during ALA treatment on specific genes related to iron metabolism, with a particular emphasis on mitochondrial iron metabolism genes. In our study, we observed differences depending on the cell line studied. For the HCT116 and MCF-7 cell lines, in most cases, the decrease in the expression of selected targets correlated with the increase in protoporphyrin IX (PPIX) concentration and the observed photodynamic effect, aligning with existing literature data. The Hs683 cell line showed a different gene expression pattern, previously not described in the literature. In this study, we collected an extensive analysis of the gene variation occurring after the application of novel thiosemicarbazone derivatives and presented versatile and effective compounds with great potential for use in ALA-PDT.
Collapse
Affiliation(s)
- Robert Gawecki
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (R.G.); (P.R.)
- SPIN-Lab Centre for Microscopic Research of Matter, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Patrycja Rawicka
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (R.G.); (P.R.)
| | - Marta Rogalska
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland; (M.R.); (M.S.)
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland; (M.R.); (M.S.)
| | - Anna Mrozek-Wilczkiewicz
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (R.G.); (P.R.)
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
D’Antonio DL, Marchetti S, Pignatelli P, Umme S, De Bellis D, Lanuti P, Piattelli A, Curia MC. Effect of 5-Aminolevulinic Acid (5-ALA) in "ALADENT" Gel Formulation and Photodynamic Therapy (PDT) against Human Oral and Pancreatic Cancers. Biomedicines 2024; 12:1316. [PMID: 38927525 PMCID: PMC11201195 DOI: 10.3390/biomedicines12061316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Oral squamous-cell and pancreatic carcinomas are aggressive cancers with a poor outcome. Photodynamic therapy (PDT) consists of the use of photosensitizer-induced cell and tissue damage that is activated by exposure to visible light. PDT selectively acts on cancer cells, which have an accumulation of photosensitizer superior to that of the normal surrounding tissues. 5-aminolevulinic acid (5-ALA) induces the production of protoporphyrin IX (PpIX), an endogenous photosensitizer activated in PDT. This study aimed to test the effect of a new gel containing 5% v/v 5-ALA (ALAD-PDT) on human oral CAL-27 and pancreatic CAPAN-2 cancer cell lines. The cell lines were incubated in low concentrations of ALAD-PDT (0.05%, 0.10%, 0.20%, 0.40%, 0.75%, 1.0%) for 4 h or 8 h, and then irradiated for 7 min with 630 nm RED light. The cytotoxic effects of ALAD-PDT were measured using the MTS assay. Apoptosis, cell cycle, and ROS assays were performed using flow cytometry. PpIX accumulation was measured using a spectrofluorometer after 10 min and 24 and 48 h of treatment. The viability was extremely reduced at all concentrations, at 4 h for CAPAN-2 and at 8 h for CAL-27. ALAD-PDT induced marked apoptosis rates in both oral and pancreatic cancer cells. Elevated ROS production and appreciable levels of PpIX were detected in both cell lines. The use of ALA-PDT as a topical or intralesional therapy would permit the use of very low doses to achieve effective results and minimize side effects. ALAD-PDT has the potential to play a significant role in complex oral and pancreatic anticancer therapies.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Simona Marchetti
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| | - Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Jonio, 74122 Taranto, Italy;
| | - Samia Umme
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| | - Domenico De Bellis
- Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.D.B.); (P.L.)
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.D.B.); (P.L.)
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| |
Collapse
|
4
|
Albalkhi I, Shafqat A, Bin-Alamer O, Abou Al-Shaar AR, Mallela AN, Fernández-de Thomas RJ, Zinn PO, Gerszten PC, Hadjipanayis CG, Abou-Al-Shaar H. Fluorescence-guided resection of intradural spinal tumors: a systematic review and meta-analysis. Neurosurg Rev 2023; 47:10. [PMID: 38085385 DOI: 10.1007/s10143-023-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Intradural spinal tumors present significant challenges due to involvement of critical motor and sensory tracts. Achieving maximal resection while preserving functional tissue is therefore crucial. Fluorescence-guided surgery aims to improve resection accuracy and is well studied for brain tumors, but its efficacy has not been fully assessed for spinal tumors. This meta-analysis aims to delineate the efficacy of fluorescence guidance in intradural spinal tumor resection. The authors performed a systematic review in four databases. We included studies that have utilized fluorescence agents, 5-aminolevulinic acid (5-ALA) or sodium fluorescein, for the resection of intradural spinal tumors. A meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 12 studies involving 552 patients undergoing fluorescence-guided intradural spinal tumor resection were included. Meningiomas demonstrated a 98% fluorescence rate and were associated with a homogenous florescence pattern; however, astrocytomas had variable fluorescence rate with pooled proportion of 70%. There was no significant difference in gross total resection (GTR) rates between fluorescein and 5-ALA (94% vs 84%, p = .22). Pre-operative contrast enhancement was significantly associated with intraoperative fluorescence with fluorescein. Intramedullary tumors with positive intraoperative fluorescence were significantly associated with higher GTR rates (96% vs 73%, p = .03). Utilizing fluorescence guidance during intradural spinal tumor resection holds promise of improving intraoperative visualization for specific intradural spinal tumors. Meningiomas and ependymomas have the highest fluorescence rates especially with sodium fluorescein; on the other hand, astrocytomas have variable fluorescence rates with no superiority of either agent. Positive fluorescence of intramedullary tumors is associated with a higher degree of resection.
Collapse
Affiliation(s)
- Ibrahem Albalkhi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Nomoto T, Komoto K, Nagano T, Ishii T, Guo H, Honda Y, Ogura SI, Ishizuka M, Nishiyama N. Polymeric iron chelators for enhancing 5-aminolevulinic acid-induced photodynamic therapy. Cancer Sci 2023; 114:1086-1094. [PMID: 36341512 PMCID: PMC9986068 DOI: 10.1111/cas.15637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is an amino acid that can be metabolized into a photosensitizer, protoporphyrin IX (PpIX) selectively in a tumor cell, permitting minimally invasive photodynamic diagnosis/therapy. However, some malignant tumor cells have excess intracellular labile iron and facilitate the conversion of PpIX into heme, which compromises the therapeutic potency of 5-ALA. Here, we examined the potential of chelation of such unfavorable intratumoral labile iron in photodynamic therapy (PDT) with 5-ALA hydrochloride, using polymeric iron chelators that we recently developed. The polymeric iron chelator efficiently inactivated the intracellular labile iron in cultured cancer cells and importantly enhanced the accumulation of PpIX, thereby improving the cytotoxicity upon photoirradiation. Even in in vivo study with subcutaneous tumor models, the polymeric iron chelator augmented the intratumoral accumulation of PpIX and the PDT effect. This study suggests that our polymeric iron chelator could be a tool for boosting the effect of 5-ALA-induced PDT by modulating tumor microenvironment.
Collapse
Affiliation(s)
- Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kana Komoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | - Haochen Guo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shun-Ichiro Ogura
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| |
Collapse
|
6
|
Howley R, Mansi M, Shinde J, Restrepo J, Chen B. Analysis of Renal Cell Carcinoma Cell Response to the Enhancement of 5-aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence by Iron Chelator Deferoxamine †. Photochem Photobiol 2023; 99:787-792. [PMID: 35857390 PMCID: PMC10258817 DOI: 10.1111/php.13678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023]
Abstract
As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Janhavi Shinde
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Juliana Restrepo
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Ma CD, Van Horn CG, Wan M, Bishop C, Bonkovsky HL. Assessment of porphyrogenicity of drugs and chemicals in selected hepatic cell culture models through a fluorescence-based screening assay. Pharmacol Res Perspect 2022; 10:e00951. [PMID: 35445802 PMCID: PMC9022196 DOI: 10.1002/prp2.951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/02/2022] [Indexed: 12/15/2022] Open
Abstract
Compounds that induce 5-aminolevulinic acid [ALA] synthase-1 and/or cytochromes P-450 may induce acute porphyric attacks in patients with the acute hepatic porphyrias [AHPs]. Currently, there is no simple, robust model used to assess and predict the porphyrogenicity of drugs and chemicals. Our aim was to develop a fluorescence-based in vitro assay for this purpose. We studied four different hepatic cell culture models: HepG2 cells, LMH cells, 3D HepG2 organoids, and 3D organoids of primary liver cells from people without known disease [normal human controls]. We took advantage of the fluorescent properties of protoporphyrin IX [PP], the last intermediate of the heme biosynthesis pathway, performing fluorescence spectrometry to measure the intensity of fluorescence emitted by these cells treated with selected compounds of importance to patients with AHPs. Among the four cell culture models, the LMH cells produced the highest fluorescence readings, suggesting that these cells retain more robust heme biosynthesis enzymes or that the other cell models may have lost their inducibility of ALA synthase-1 [ALAS-1]. Allyl isopropyl acetamide [AIA], a known potent porphyrogen and inducer of ALAS-1, was used as a positive control to help predict porphyrogenicity for tested compounds. Among the tested compounds (acetaminophen, acetylsalicylic acid, β-estradiol, hydroxychloroquine sulfate, alpha-methyldopa, D (-) norgestrel, phenobarbital, phenytoin, sulfamethoxazole, sulfisoxazole, sodium valproate, and valsartan), concentrations greater than 0.314 mM for norgestrel, phenobarbital, phenytoin, and sodium valproate produced fluorescence readings higher than the reading produced by the positive AIA control. Porphyrin accumulation was also measured by HPLC to confirm the validity of the assay. We conclude that LMH cell cultures in multi-well plates are an inexpensive, robust, and simple system to predict the porphyrogenicity of existing or novel compounds that may exacerbate the AHPs.
Collapse
Affiliation(s)
- Christopher D Ma
- Department of Internal Medicine, Section on Gastroenterology and Hepatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Cynthia G Van Horn
- Department of Internal Medicine, Section on Gastroenterology and Hepatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Meimei Wan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Herbert L Bonkovsky
- Department of Internal Medicine, Section on Gastroenterology and Hepatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Experimental investigation of a combinational iron chelating protoporphyrin IX prodrug for fluorescence detection and photodynamic therapy. Lasers Med Sci 2021; 37:1155-1166. [PMID: 34218351 PMCID: PMC8918167 DOI: 10.1007/s10103-021-03367-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 10/31/2022]
Abstract
Photodynamic therapy (PDT) is an oxygen-dependent, light-activated, and locally destructive drug treatment of cancer. Protoporphyrin IX (PpIX)-induced PDT exploits cancer cells' own innate heme biosynthesis to hyper-accumulate the naturally fluorescent and photoactive precursor to heme, PpIX. This occurs as a result of administering heme precursors (e.g., aminolevulinic acid; ALA) because the final step of the pathway (the insertion of ferrous iron into PpIX by ferrochelatase to form heme) is relatively slow. Separate administration of an iron chelating agent has previously been demonstrated to significantly improve dermatological PpIX-PDT by further limiting heme production. A newly synthesized combinational iron chelating PpIX prodrug (AP2-18) has been assessed experimentally in cultured primary human cells of bladder and dermatological origin, as an alternative photosensitizing agent to ALA or its methyl or hexyl esters (MAL and HAL respectively) for photodetection/PDT. Findings indicated that the technique of iron chelation (either through the separate administration of the established hydroxypyridinone iron chelator CP94 or the just as effective combined AP2-18) did not enhance either PpIX fluorescence or PDT-induced (neutral red assessed) cell death in human primary normal and malignant bladder cells. However, 500 µM AP2-18 significantly increased PpIX accumulation and produced a trend of increased cell death within epithelial squamous carcinoma cells. PpIX accumulation destabilized the actin cytoskeleton in bladder cancer cells prior to PDT and resulted in caspase-3 cleavage/early apoptosis afterwards. AP2-18 iron chelation should continue to be investigated for the enhancement of dermatological PpIX-PDT applications but not bladder photodetection/PDT.
Collapse
|
9
|
Labib PL, Yaghini E, Davidson BR, MacRobert AJ, Pereira SP. 5-Aminolevulinic acid for fluorescence-guided surgery in pancreatic cancer: Cellular transport and fluorescence quantification studies. Transl Oncol 2021; 14:100886. [PMID: 33059124 PMCID: PMC7566921 DOI: 10.1016/j.tranon.2020.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
5-Aminolevulinic acid (ALA) is a potential contrast agent for fluorescence-guided surgery in pancreatic ductal adenocarcinoma (PDAC). However, factors influencing ALA uptake in PDAC have not been adequately assessed. We investigated ALA-induced porphyrin fluorescence in PDAC cell lines CFPAC-1 and PANC-1 and pancreatic ductal cell line H6c7 following incubation with 0.25-1.0 mM ALA for 4-48 h. Fluorescence was assessed qualitatively by microscopy and quantitatively by plate reader and flow cytometry. Haem biosynthesis enzymes and transporters were measured by quantitative polymerase chain reaction (qPCR). CFPAC-1 cells exhibited intense fluorescence under microscopy at low concentrations whereas PANC-1 cells and pancreatic ductal cell line H6c7 showed much lower fluorescence. Quantitative fluorescence studies demonstrated fluorescence saturation in the two PDAC cell lines at 0.5 mM ALA, whereas H6c7 cells showed increasing fluorescence with increasing ALA. Based on the PDAC:H6c7 fluorescence ratio studies, lower ALA concentrations provide better contrast between PDAC and benign pancreatic cells. Studies with qPCR showed upregulation of ALA influx transporter PEPT1 in CFPAC-1, whereas PANC-1 upregulated the efflux transporter ABCG2. We conclude that PEPT1 and ABCG2 expression may be key contributory factors for variability in ALA-induced fluorescence in PDAC.
Collapse
Affiliation(s)
- P L Labib
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - E Yaghini
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - B R Davidson
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - A J MacRobert
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - S P Pereira
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
10
|
Howley R, Mansi M, Shinde J, Restrepo J, Chen B. Evaluation of aminolevulinic acid-mediated protoporphyrin IX fluorescence and enhancement by ABCG2 inhibitors in renal cell carcinoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:112017. [PMID: 32919173 DOI: 10.1016/j.jphotobiol.2020.112017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022]
Abstract
Aminolevulinic acid (ALA) has been approved as an intraoperative molecular imaging probe for protoporphyrin IX (PpIX) fluorescence-guided resection of glioma. Here we explored its potential application for renal cell carcinoma (RCC) that is showing increased incidence in recent years. ALA-mediated PpIX in cell lysates (intracellular) and culture medium was measured in five human RCC cell lines (786-O, 769-P, A-704, Caki-1, Caki-2) and a non-tumor human kidney epithelial cell line HK-2 by spectrofluorometry and flow cytometry. The activity of PpIX bioconversion enzyme ferrochelatase (FECH) and PpIX efflux transporter ABCG2 was determined to correlate with the PpIX level. We found that ALA-PpIX fluorescence was highly variable among RCC cell lines and A-704 was the only RCC cell line exhibiting significantly higher intracellular PpIX than HK-2 cells. Neither the intracellular PpIX level nor the total amount of PpIX (including PpIX in cell lysates and the medium) had significant correlation with the activity of FECH or ABCG2. To enhance the intracellular PpIX, cells were treated with Ko143, a pharmacological inhibitor of ABCG2. Ko143 significantly increased the intracellular PpIX in cell lines with ABCG2 activity, but not in cell lines with little ABCG2 activity. In fact, there was a positive correlation between the ABCG2 activity and Ko143-induced PpIX enhancement across kidney cell lines. To identify clinically relevant ABCG2 inhibitors, small molecule inhibitors targeting various cell signaling pathways, some of which are known to inhibit ABCG2, were evaluated for the enhancement of ALA-PpIX in Caki-2 cells that had the highest ABCG2 activity in the RCC cell panel. Our screening led to the identification of several clinically available inhibitors that significantly increased the intracellular PpIX. Particularly, kinase inhibitor lapatinib exhibited the strongest enhancement effect. These clinical inhibitors can be used for the enhancement of ALA-PpIX fluorescence in tumors with elevated ABCG2 activity.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Janhavi Shinde
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Juliana Restrepo
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Chan KM, Gleadle J, Vasilev K, MacGregor M. Probing Hexaminolevulinate Mediated PpIX Fluorescence in Cancer Cell Suspensions in the Presence of Chemical Adjuvants. Int J Mol Sci 2020; 21:ijms21082963. [PMID: 32331454 PMCID: PMC7216002 DOI: 10.3390/ijms21082963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Exogenous administration of hexaminolevulinate (HAL) induces fluorescent protoporphyrin IX (PpIX) accumulation preferentially in cancer cells. However, the PpIX fluorescence intensities between noncancer and cancer cells are highly variable. The contrast between cancer and noncancer cells may be insufficient to reliably discriminate, especially at the single cell level in cancer diagnostics. This study examines the use of the chemical adjuvants dimethylsulphoxide (DMSO) or deferoxamine (DFO) to enhance the HAL induced PpIX accumulation in cancer cells. Our results showed that in some of the incubation conditions tested, the addition of DFO with HAL significantly increased PpIX 21 fluorescence of adherent monolayer cancer cells, but this was never the case for cells in suspension. Permeabilisation with DMSO did not increase PpIX fluorescence. Cell-to-cell interaction may well play an important role in the PpIX accumulation when suspended cells are treated in HAL and adjuvant chemicals.
Collapse
Affiliation(s)
- Kit Man Chan
- Department of Engineering, University of South Australia, Adelaide, SA 5095, Australia;
| | - Jonathan Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia;
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Krasimir Vasilev
- Future Industries Institute, School of Engineering, University of South Australia, Adelaide, SA 5095, Australia;
| | - Melanie MacGregor
- Future Industries Institute, School of Engineering, University of South Australia, Adelaide, SA 5095, Australia;
- Correspondence: ; Tel.: +61-8-8302-3518
| |
Collapse
|
12
|
Kraus D, Palasuberniam P, Chen B. Therapeutic Enhancement of Verteporfin-mediated Photodynamic Therapy by mTOR Inhibitors. Photochem Photobiol 2019; 96:358-364. [PMID: 31769520 DOI: 10.1111/php.13187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023]
Abstract
Photodynamic therapy (PDT) with photosensitizer verteporfin is a clinically approved vascular disrupting modality that is currently in clinical trial for cancer treatment. In this study, we evaluated PDT in combination with either mTORC1 inhibitor rapamycin or mTORC1/C2 dual inhibitor AZD2014 for therapeutic enhancement in SVEC endothelial cells. Verteporfin-PDT alone induced cell apoptosis by activating the intrinsic apoptotic pathway. However, it increased the expression of anti-apoptotic protein MCL-1 and the phosphorylation of S6, a downstream molecule of mTOR signaling. In contrast, mTOR inhibitors rapamycin and AZD2014 did not induce apoptosis in SVEC cells. They suppressed MCL-1 expression and S6 phosphorylation and imposed a potent inhibition on cell proliferation. PDT in combination with mTOR inhibitors activated the intrinsic apoptotic pathway and resulted in increased apoptosis. Combination treatments also led to sustained inhibition of cell proliferation. Although AZD2014 was more effective for cell growth inhibition and PDT enhancement than rapamycin at the higher concentrations examined in the study, both inhibitors effectively enhanced PDT response, suggesting that inhibition of mTORC1 is crucial for PDT enhancement. Our results indicate that mTOR inhibitors mechanistically cooperate with PDT for enhanced cell death and sustained growth inhibition, supporting a combination approach for therapeutic enhancement.
Collapse
Affiliation(s)
- Daniel Kraus
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA.,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|