1
|
Pradal LDA, de Freitas E, Azevedo MRB, Costa R, Bertolini GRF. Photobiomodulation in Burn Wounds: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Photobiomodul Photomed Laser Surg 2025; 43:8-23. [PMID: 39172550 DOI: 10.1089/photob.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Objective: This systematic review and meta-analysis main goal was to evaluate the efficacy of photobiomodulation as burn wounds treatment. Methods: Systematic review of literature available in databases such as PubMed, Web of Science, Embase, Latin American and Caribbean Health Sciences Literature (LILACS), and The Cumulative Index to Nursing and Allied Health Literature (CINAHL) and gray literature in Google Scholar, Livivi, and Open Gray. SYRCLE's RoB tool was applied to determine methodological quality and risk of bias, and meta-analysis was performed using the software Review Manager. Results: Fifty-one studies, gathering more than three thousand animals were included in this systematic review, and four studies were selected to the meta-analysis due to their suitability. The results indicated that photobiomodulation was not effective to improve, statistical significantly, wound retraction (SMD = -0.22; 95% CI = -4.19, 3.75; p = 0.91; I2 = 92%) or collagen deposition (SMD = -0.02; 95% CI = -2.17, 2.13; p = 0.99; I2 = 78%). Conclusion: This meta-analysis suggests that photobiomodulation, applied in burn wounds, accordingly to the protocols presented by the selected studies, was not effective over analyzed outcomes. However, this conclusion could be further discussed and verified in more homogeneous animal models and human clinical trials.
Collapse
Affiliation(s)
- Lilian de Araujo Pradal
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | - Edicleia de Freitas
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | | | - Rosemeire Costa
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | | |
Collapse
|
2
|
Bahr AC, Scherer NB, de Gregório E, Kieling L, de Castro AL, Araujo ASDR, Türck P, Dal Lago P. Photobiomodulation and Physical Exercise Modulate of Cell Survival Proteins in the Skeletal Muscle of Rats with Heart Failure and Diabetes Mellitus. Photobiomodul Photomed Laser Surg 2024; 42:768-778. [PMID: 39441652 DOI: 10.1089/photob.2024.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Introduction: Heart failure (HF) and type 2 diabetes mellitus (DM2) are global health problems that often lead to muscle atrophy. These conditions are associated with increased autophagy and apoptosis in the muscle cells, resulting in decreased muscle mass. Physical exercise associated with photobiomodulation (PBM) seems promising to attenuate the skeletal muscle changes caused by HF and DM2, due to its direct effects on mitochondria, which may result in an increase in antioxidant capacity. Objective: To verify the influence of physical exercise and the association with PBM on autophagy, apoptosis, and cell survival signaling pathways in myocytes from rats with HF and DM2. Materials and Methods: Male rats were assigned to one of four groups: control (CT), HF+DM (disease model), exercise+HF+DM (EX+HF+DM), and EX+HF+DM+PBM (EX+HF+DM+PBM). To induce DM2, we administered streptozotocin (STZ) (0.25 mL/kg, intraperitoneally). HF was induced by coronary ligation. One week post-induction, an 8-week aerobic exercise and PBM protocol was initiated. Western blot analysis was used to measure the expression of apoptosis-related proteins and autophagy. Results: The EX+HF+DM+PBM group showed a substantial increase in Nrf2, p-AKT, and LC3-I levels compared to the HF+DM group. Conclusions: These findings suggest that physical exercise combined with PBM can upregulate proteins that promote myocyte survival in rats with HF and DM2.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Naira Bohrer Scherer
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Elizama de Gregório
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas Kieling
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alexandre Luz de Castro
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Patrick Türck
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pedro Dal Lago
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| |
Collapse
|
3
|
Binrayes A. An Update on the Use of Lasers in Prosthodontics. Cureus 2024; 16:e57282. [PMID: 38690478 PMCID: PMC11058581 DOI: 10.7759/cureus.57282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Lasers are employed in all fields of modern dentistry nowadays, including both surgical and non-surgical dental procedures. Prosthodontics, a branch of dentistry, has also embraced lasers as an invaluable addition to conventional methodologies. This helps improve the standard of care for patients and dentists due to its precise excision, quick healing, and enhanced tissue response after surgeries. In prosthodontics, the most commonly used lasers are carbon dioxide, argon, and yttrium-aluminum-garnet (YAG) lasers. Many reviews have been published in the literature regarding the use of lasers in dentistry; however, reviews on the use of lasers in the field of prosthodontics are limited. This review aims to explain the diverse applications and advancements of lasers in prosthodontics. Furthermore, it will highlight the integration of lasers in diagnostic protocols, treatment modalities, and the fabrication of prosthetic restorations.
Collapse
Affiliation(s)
- Abdulaziz Binrayes
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, SAU
- Department of Dentistry, Vision College, Riyadh, SAU
| |
Collapse
|
4
|
Raffaele RM, Baldo ME, Palma LF, Campos L. Low-level laser for the management of head-and-neck burn wounds. Natl J Maxillofac Surg 2023; 14:496-498. [PMID: 38273913 PMCID: PMC10806313 DOI: 10.4103/njms.njms_440_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/25/2021] [Indexed: 01/27/2024] Open
Abstract
Burn injuries are of serious concern worldwide not only because of the physical impact but also because of severe mental and emotional distress and reduced quality of life. The usual management comprises topical and systemic medications, and supportive care; however, conventional therapy may be expensive and insufficient for many cases. Thus, we describe herein a unique case in which a low-level laser was used concomitantly with the conventional approach for the management of head and neck burn wounds and could improve the patient's clinical condition within a short period.
Collapse
Affiliation(s)
| | - Mario Eduardo Baldo
- Graduate Program in Health and Development in West Central Region, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Luiz Felipe Palma
- Department of Pathology, Federal University of São Paulo, SP, Brazil
| | - Luana Campos
- Graduate Program in Implantology, University of Santo Amaro, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Abdelsamie M, Zahran F, Hussine AA, Shaker O, Al-Mahallawi AM. Clinical and biochemical assessment of the effect of topical use of coenzyme Q10 versus topical corticosteroid in management of symptomatic oral lichen planus: randomized controlled clinical trial. BMC Oral Health 2023; 23:506. [PMID: 37480004 PMCID: PMC10360223 DOI: 10.1186/s12903-023-03206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic mucocutaneous immunologically mediated condition that has a great adverse effect on oral functions. Corticosteroids are still the first drugs of choice used in the treatment of OLP; however, they have extensive medical side effects. The present study was carried out to assess the clinical therapeutic effect of the topical use of coenzyme Q10 (coQ10 or ubiquinol) versus topical corticosteroids in the management of symptomatic OLP and to determine whether the effect, if any, was due to the powerful antioxidant activity of coQ10. SUBJECTS AND METHODS We performed a randomized, double blinded controlled trial at the Faculty of Dentistry, Cairo University, Egypt. The study was conducted on 34 patients suffering from symptomatic OLP. Patients were randomly divided into two groups: intervention group (I),who received topical CoQ10 in the form of mucoadhesive tablets (40% CoQ10) 3 times daily for one month and control group (II),who received topical corticosteroid (kenacort in Orabase: triamcinolone acetonide 0.1% 5-g adhesive paste - dermapharm), 4 times daily for one month. Patients were evaluated at one-week intervals using the clinical parameters (score) of pain (VAS) and lesion size. Additionally, salivary levels of malondialdehyde (MDA) were detected in both groups before and after treatment using ELISA. All recorded data were analysed using independent t test, ANOVA followed by Bonferroni post hoc test for lesion size and salivary level of MDA data and Mann-Whitney U test and Friedman test for VAS data. RESULTS Both groups showed a significant reduction in pain and the size of the lesions (p ≤ 0.05) with no statistically significant difference between them (p > 0.05), and this clinical improvement was associated with a reduction in the salivary levels of MDA in both groups. CONCLUSIONS The topical use of CoQ10 mucoadhesive tablets was as effective as the topical use of triamcinolone acetonide, and its clinical effect was associated with a reduction in the salivary level of MDA. TRIAL REGISTRATION The study protocol was registered at www. CLINICALTRIAL gov (NCT04091698) and registration date: 17/9/2019.
Collapse
Affiliation(s)
| | - Fat'heya Zahran
- Oral Medicine, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Amal A Hussine
- Oral Medicine, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| |
Collapse
|
6
|
Salman S, Guermonprez C, Peno-Mazzarino L, Lati E, Rousseaud A, Declercq L, Kerdine-Römer S. Photobiomodulation Controls Keratinocytes Inflammatory Response through Nrf2 and Reduces Langerhans Cells Activation. Antioxidants (Basel) 2023; 12:antiox12030766. [PMID: 36979014 PMCID: PMC10045240 DOI: 10.3390/antiox12030766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Photobiomodulation (PBM) is rapidly gaining traction as a valuable tool in dermatology for treating many inflammatory skin conditions using low levels of visible light or near-infrared radiation. However, the physiological regulatory pathways responsible for the anti-inflammatory effect of PBM have not been well defined. Since previous studies showed that nuclear factor-erythroid 2 like 2 (Nrf2) is a master regulator of the skin inflammatory response, we have addressed its role in controlling inflammation by PBM. Primary human keratinocytes (KCs) stimulated with 2,4-dinitrochlorobenzene (DNCB) to mimic pro-inflammatory stress were illuminated with two wavelengths: 660 nm or 520 nm. Both lights significantly reduced the mRNA expression of the DNCB-triggered TNF-α, IL-6, and IL-8 cytokines in KCs, while they enhanced Nrf2 pathway activation. PBM-induced Nrf2 is a key regulator of the inflammatory response in KCs since its absence abolished the regulatory effect of light on cytokines production. Further investigations of the mechanisms contributing to the immunoregulatory effect of PBM in inflamed human skin explants showed that 660 nm light prevented Langerhans cells migration into the dermis, preserving their dendricity, and decreased pro-inflammatory cytokine production compared to the DNCB-treated group. This study is the first to report that the PBM-mediated anti-inflammatory response in KCs is Nrf2-dependent and further support the role of PBM in skin immunomodulation. Therefore, PBM should be considered a promising alternative or complementary therapeutic approach for treating skin-related inflammatory diseases.
Collapse
Affiliation(s)
- Sara Salman
- Inserm, Inflammation Microbiome Immunosurveillance, Université Paris-Saclay, 91400 Orsay, France
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Cyprien Guermonprez
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | | | - Elian Lati
- Laboratoire BIO-EC, 91160 Longjumeau, France
| | - Audrey Rousseaud
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Lieve Declercq
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Saadia Kerdine-Römer
- Inserm, Inflammation Microbiome Immunosurveillance, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
7
|
Salman S, Guermonprez C, Declercq L, Kerdine-Römer S. P05-03 Photobiomodulation-induced Nrf2 partially controls the inflammatory response in keratinocytes. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Besser M, Schaeler L, Plattfaut I, Brill FHH, Kampe A, Geffken M, Smeets R, Debus ES, Stuermer EK. Pulsed low-intensity laser treatment stimulates wound healing without enhancing biofilm development in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112504. [PMID: 35777177 DOI: 10.1016/j.jphotobiol.2022.112504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Treating infected or chronic wounds burdened with biofilms still is a major challenge in medical care. Healing-stimulating factors lose their efficacy due to bacterial degradation, and antimicrobial substances negatively affect dermal cells. Therefore, alternative treatment approaches like the pulsed low intensity laser therapy (LILT) require consideration. METHODS The effect of pulsed LILT (904 nm, in three frequencies) on relevant human cells of the wound healing process (fibroblasts (BJ), keratinocytes (HaCaT), endothelial cells (HMEC), monocytes (THP-1)) were investigated in in-vitro and ex-vivo wound models with respect to viability, proliferation and migration. Antimicrobial efficacy of the most efficient frequency in cell biological analyses of LILT (3200 Hz) was determined in a human biofilm model (lhBIOM). Quantification of bacterial load was evaluated by suspension method and qualitative visualization was performed by scanning electron microscopy (SEM). RESULTS Pulsed LILT at 904 nm at 3200 Hz ± 50% showed the most positive effects on metabolic activity and proliferation of human wound cells in vitro (after 72 h - BJ: BPT 0.97 ± 0.05 vs. 0.75 ± 0.04 (p = 0.0283); HaCaT: BPT 0.79 ± 0.04 vs. 0.59 ± 0.02 (p = 0.0106); HMEC: 0.74 ± 0.02 vs. 0.52 ± 0.04 (p = 0.009); THP-1: 0.58 ± 0.01 vs. 0.64 ± 0.01 (p > 0.05) and ex vivo. Interestingly, re-epithelialization was stimulated in a frequency-independent manner. The inhibition of metabolic activity after TNF-α application was abolished after laser treatment. No impact of LILT on monocytes was detected. Likewise, the tested LILT regimens showed no growth rate reducing effects on three bacterial strains (after 72 h - PA: -1.03%; SA: -0.02%; EF: -1,89%) and one fungal (-2.06%) biofilm producing species compared to the respective untreated control. Accordingly, no significant morphological changes of the biofilms were observed after LILT treatment in the SEM. CONCLUSIONS Frequent application of LILT (904 nm, 3200 Hz) seems to be beneficial for the metabolism of human dermal cells during wound healing. Considering this, the lack of disturbance of the behavior of the immune cells and no growth-inducing effect on bacteria and fungi in the biofilm can be assigned as rather positive. Based on this combined mode of action, LILT may be an option for hard to heal wounds infected with persistent biofilms.
Collapse
Affiliation(s)
- Manuela Besser
- Clinic for General, Visceral and Transplant Surgery, University Hospital Muenster, Germany
| | - Lukas Schaeler
- Institute of Virology and Microbiology, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Germany
| | - Isabell Plattfaut
- Institute of Virology and Microbiology, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Germany
| | - Florian H H Brill
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Hamburg, Germany
| | - Andreas Kampe
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Hamburg, Germany
| | - Maria Geffken
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - E Sebastian Debus
- Dpt. of Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf (UKE), Germany
| | - Ewa K Stuermer
- Dpt. of Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf (UKE), Germany.
| |
Collapse
|
9
|
Zaccaron RP, Barbieri RT, Mendes C, Venturini LM, Alves N, Mariano SDS, de Andrade TAM, Hermes de Araújo PH, Feuser PE, Thirupathi A, Machado-de-Ávila RA, Lock Silveira PC. Photobiomodulation associated with lipid nanoparticles and hyaluronic acid accelerate the healing of excisional wounds. J Biomater Appl 2022; 37:668-682. [PMID: 35705485 DOI: 10.1177/08853282221109344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: This article aimed to investigate the effects of the association between photobiomodulation and hyaluronic acid incorporated in lipid nanoparticles in an epithelial lesion model in inflammatory parameters and oxidative stress. Methods: Eighty Wistar rats were randomly assigned to the following groups: epithelial lesion group (EL); EL+PBM; EL+HA; EL+SLNs; EL+SLNs-HA; EL+PBM+HA; EL+PBM+SLNs; EL+PBM+SLNs-HA. The animals were anesthetized with 4% isofluorane after shaving and induced to an epithelial lesion. Topical treatment with a gel containing HA (0.9%) and/or SLNs (10 mg/mL) and with laser irradiation occurred daily for 1 week. Results: The results showed an increase in wound contraction on the seventh day in the LE + LBM + AH-NPL group, a reduction in pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α), an increase in anti-inflammatory cytokines (IL- 4 and IL-10) and TGF-β. The levels of pro-inflammatory cytokine IL-4 and TGF-β also showed an increase in the LE + NPL-AH, LE + FBM + AH, LE + FBM + NPL and LE + FBM + NPL-AH groups. Regarding oxidative stress parameters, the levels of DCF and nitrite decreased in the combined therapy group when compared to the control group, as well as oxidative damage (carbonyl and sulfhydryl). In the antioxidant defense, there was an increase in GSH and SOD in the combination therapy group. Histological analysis showed a reduction in inflammatory infiltrate in the combination therapy group. The number of fibroblasts and the compaction of collagen fibers did not obtain significant responses. Conclusions: Results analyzed together showed that the combined therapy favored the repair process, and that studies can be carried out to enhance the histological analysis therapy favored the tissue repair process and that studies can be carried out to enhance the histological analysis.
Collapse
Affiliation(s)
- Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Rusilania Tozi Barbieri
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Naiara Alves
- Graduate Program of Biomedical Science, Herminio Ometto Foundation, Araras-SP, Brazil
| | | | | | | | - Paulo Emílio Feuser
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Department of Chemical Engineering and Food Engineering, 28117Federal University of Santa Catarina, Florianopolis, Brazil
| | - Anand Thirupathi
- Faculty of Sports Science, 47862Ningbo University, Ningbo, China
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
10
|
Yang M, Jin Y, Yang J, Wang C, Wang X, Wang Y. Preparation of Codonopsis pilosula polysaccharide microcapsules and its effect and mechanism on skin wound healing in rats. J Biomater Appl 2022; 36:1723-1736. [PMID: 35235468 DOI: 10.1177/08853282211054333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, after optimizing the extraction process of CPP (Codonopsis pilosula polysaccharides), CPPM (CPP microcapsules) were prepared. Subsequently, the structural characteristics and physicochemical properties were studied. The results showed that CPPM is a hollow sac-like structure with rough folds and protuberances and comes in spherical or ellipsoidal shapes with uniform particle size. CPPM has certain swelling degree, low hardness, good adhesion, and stability. Then, the effect of CPPM on wounds repair was investigated by a rat model. The results showed that CPPM could improve the wound healing rate. Histological evaluation showed CPPM could promote neovascularization and fibroblast proliferation. By investigating the healing mechanism, it was found that CPPM increased the hydroxyproline content in granulation tissue and had an excellent antioxidant ability, and then inhibited lipid peroxidation, in addition, it significantly increased the transcript levels of VEGF and miRNA-21 genes, indicating that CPPM play an influential role in vascular remodeling during wound healing by up-regulating the expression of VEGF and miRNA-21 genes.
Collapse
Affiliation(s)
- Mingjun Yang
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| | - Yongming Jin
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| | - Jumei Yang
- 74713Lanzhou University Second Hospital, Lanzhou, China
| | - Chenliang Wang
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| | - Xinjian Wang
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, 56677Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
11
|
Superpulsed 904 nm laser photobiomodulation combined with coenzyme Q10 synergistically augment burn wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Saoudi M, Badraoui R, Chira A, Saeed M, Bouali N, Elkahoui S, Alam JM, Kallel C, El Feki A. The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats. Molecules 2021; 26:4875. [PMID: 34443463 PMCID: PMC8398921 DOI: 10.3390/molecules26164875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/24/2023] Open
Abstract
In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug "Cytolcentella® cream". Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.
Collapse
Affiliation(s)
- Mongi Saoudi
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| | - Riadh Badraoui
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
- Section of Histology and Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta, Tunis 1007, Tunisia
| | - Ahlem Chira
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| | - Mohd Saeed
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Nouha Bouali
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Salem Elkahoui
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Jahoor M. Alam
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Choumous Kallel
- Hematology Laboratory, Hospital Habib Bourguiba, Sfax 3029, Tunisia;
| | - Abdelfattah El Feki
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| |
Collapse
|
13
|
Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-β1. Sci Rep 2021; 11:13371. [PMID: 34183697 PMCID: PMC8238984 DOI: 10.1038/s41598-021-92650-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
The severity of tissue injury in burn wounds from associated inflammatory and immune sequelae presents a significant clinical management challenge. Among various biophysical wound management approaches, low dose biophotonics treatments, termed Photobiomodulation (PBM) therapy, has gained recent attention. One of the PBM molecular mechanisms of PBM treatments involves photoactivation of latent TGF-β1 that is capable of promoting tissue healing and regeneration. This work examined the efficacy of PBM treatments in a full-thickness burn wound healing in C57BL/6 mice. We first optimized the PBM protocol by monitoring tissue surface temperature and histology. We noted this dynamic irradiance surface temperature-monitored PBM protocol improved burn wound healing in mice with elevated TGF-β signaling (phospho-Smad2) and reduced inflammation-associated gene expression. Next, we investigated the roles of individual cell types involved in burn wound healing following PBM treatments and noted discrete effects on epithelieum, fibroblasts, and macrophage functions. These responses appear to be mediated via both TGF-β dependent and independent signaling pathways. Finally, to investigate specific contributions of TGF-β1 signaling in these PBM-burn wound healing, we utilized a chimeric TGF-β1/β3 knock-in (TGF-β1Lβ3/Lβ3) mice. PBM treatments failed to activate the chimeric TGF-β1Lβ3/Lβ3 complex and failed to improve burn wound healing in these mice. These results suggest activation of endogenous latent TGF-β1 following PBM treatments plays a key role in burn wound healing. These mechanistic insights can improve the safety and efficacy of clinical translation of PBM treatments for tissue healing and regeneration.
Collapse
|
14
|
Colombo E, Signore A, Aicardi S, Zekiy A, Utyuzh A, Benedicenti S, Amaroli A. Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines 2021; 9:biomedicines9030274. [PMID: 33803396 PMCID: PMC7998572 DOI: 10.3390/biomedicines9030274] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Under physiological conditions, endothelial cells are the main regulator of arterial tone homeostasis and vascular growth, sensing and transducing signals between tissue and blood. Disease risk factors can lead to their unbalanced homeostasis, known as endothelial dysfunction. Red and near-infrared light can interact with animal cells and modulate their metabolism upon interaction with mitochondria's cytochromes, which leads to increased oxygen consumption, ATP production and ROS, as well as to regulate NO release and intracellular Ca2+ concentration. This medical subject is known as photobiomodulation (PBM). We present a review of the literature on the in vitro and in vivo effects of PBM on endothelial dysfunction. METHODS A search strategy was developed consistent with the PRISMA statement. The PubMed, Scopus, Cochrane, and Scholar electronic databases were consulted to search for in vitro and in vivo studies. RESULTS Fifty out of >12,000 articles were selected. CONCLUSIONS The PBM can modulate endothelial dysfunction, improving inflammation, angiogenesis, and vasodilatation. Among the studies, 808 nm and 18 J (0.2 W, 2.05 cm2) intracoronary irradiation can prevent restenosis as well as 645 nm and 20 J (0.25 W, 2 cm2) can stimulate angiogenesis. PBM can also support hypertension cure. However, more extensive randomised controlled trials are necessary.
Collapse
Affiliation(s)
- Esteban Colombo
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Stefano Aicardi
- Department for the Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Angelina Zekiy
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Anatoliy Utyuzh
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
- Correspondence: ; Tel.: +39-010-3537309
| |
Collapse
|
15
|
Song H, Xu Y, Chang W, Zhuang J, Wu X. Negative pressure wound therapy promotes wound healing by suppressing macrophage inflammation in diabetic ulcers. Regen Med 2021; 15:2341-2349. [PMID: 33480804 DOI: 10.2217/rme-2020-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: This work aims to explore the biological role of negative pressure wound therapy (NPWT) in the treatment of diabetic ulcer. Materials & methods: Full-thickness skin defects were created in diabetic (db/db) and non diabetic (db/m) mice to create wound models. The mice were received NPWT or rapamycin injection. Mouse macrophage cells (Raw264.7) were treated with lipopolysaccharide to induce inflammatory response, and then received negative pressure treatment. We observed the wound healing of mice and examined gene and protein expression and CD68+ macrophage levels. Results: NPWT notably enhanced the wound closure ratio, and inhibited the LC3-II/LC3-I ratio and Beclin-1 expression in diabetes mellitus (DM) mice. NPWT decreased CD68+ macrophage levels in wound tissues of DM mice. The influence conferred by NPWT was abolished by rapamycin treatment. Negative pressure repressed the LC3-II/LC3-I ratio and the expression of Beclin-1, TNF-α, IL-6 and IL-1β in the Raw264.7 cells. Conclusion: NPWT promotes wound healing by suppressing autophagy and macrophage inflammation in DM.
Collapse
Affiliation(s)
- Haichen Song
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yu Xu
- Department of Otolaryngology Head & Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Wenchuan Chang
- Department of Otolaryngology Head & Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Junli Zhuang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xiaowei Wu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|