1
|
Leroux M, Luquain-Costaz C, Lawton P, Azzouz-Maache S, Delton I. Fatty Acid Composition and Metabolism in Leishmania Parasite Species: Potential Biomarkers or Drug Targets for Leishmaniasis? Int J Mol Sci 2023; 24:ijms24054702. [PMID: 36902138 PMCID: PMC10003364 DOI: 10.3390/ijms24054702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Fatty acids have received growing interest in Leishmania biology with the characterization of the enzymes allowing the complete fatty acid synthesis of this trypanosomatid parasite. This review presents a comparative analysis of the fatty acid profiles of the major classes of lipids and phospholipids in different species of Leishmania with cutaneous or visceral tropism. Specificities relating to the parasite forms, resistance to antileishmanial drugs, and host/parasite interactions are described as well as comparisons with other trypanosomatids. Emphasis is placed on polyunsaturated fatty acids and their metabolic and functional specificities, in particular, their conversion into oxygenated metabolites that are inflammatory mediators able to modulate metacyclogenesis and parasite infectivity. The impact of lipid status on the development of leishmaniasis and the potential of fatty acids as therapeutic targets or candidates for nutritional interventions are discussed.
Collapse
Affiliation(s)
- Marine Leroux
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Céline Luquain-Costaz
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
| | - Philippe Lawton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Samira Azzouz-Maache
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Isabelle Delton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
- Correspondence:
| |
Collapse
|
2
|
Venturin GL, Bragato JP, Melo LM, Rebech GT, Costa SF, de Siqueira CE, Oliveira Dos Santos Maciel M, Eugênio FDR, Patto Santos PS, de Lima VMF. Regulatory effect of PGE 2 on microbicidal activity and inflammatory cytokines in canine leishmaniasis. Parasite Immunol 2020; 42:e12713. [PMID: 32173875 DOI: 10.1111/pim.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022]
Abstract
Canine leishmaniasis (CanL) is caused by the intracellular parasite Leishmania infantum. Prostaglandin E2 (PGE2 ) exerts potent regulatory effects on the immune system in experimental model Leishmania infection, but this influence has not yet been studied in CanL. In this study, PGE2 and PGE2 receptor levels and the regulatory effect of PGE2 on arginase activity, NO2 , IL-10, IL-17, IFN-γ, TNF-α and parasite load were evaluated in cultures of splenic leucocytes obtained from dogs with CanL in the presence of agonists and inhibitors. Our results showed that splenic leucocytes from dogs with CanL had lower EP2 receptor levels than those of splenic leucocytes from healthy animals. We observed that NO2 levels decreased when the cells were treated with a PGE2 receptor agonist (EP1/EP2/EP3) or COX-2 inhibitor (NS-398) and that TNF-α, IL-17 and IFN-γ cytokine levels decreased when the cells were treated with a PGE2 receptor agonist (EP2) or PGE2 itself. The parasite load in splenic leucocyte cell cultures from dogs with CanL decreased after stimulation of the cells with PGE2 . We conclude that Leishmania infection of dogs modulates PGE2 receptors and speculate that the binding of PGE2 to its receptors may activate the microbicidal capacity of cells.
Collapse
Affiliation(s)
- Gabriela Lovizutto Venturin
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Jaqueline Poleto Bragato
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Larissa Martins Melo
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Gabriela Torres Rebech
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Sidnei Ferro Costa
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Carlos Eduardo de Siqueira
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Marilene Oliveira Dos Santos Maciel
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Flávia de Rezende Eugênio
- Clinics Department, Animal Surgery and Reproduction, School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Paulo Sérgio Patto Santos
- Clinics Department, Animal Surgery and Reproduction, School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Valéria Marçal Felix de Lima
- Clinics Department, Animal Surgery and Reproduction, School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| |
Collapse
|
3
|
López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Front Microbiol 2018; 9:1961. [PMID: 30186271 PMCID: PMC6113562 DOI: 10.3389/fmicb.2018.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host–parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.
Collapse
Affiliation(s)
- Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Molina-Berríos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Abarca-Sanhueza
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Urrutia-Llancaqueo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Peña-Espinoza
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Saha A, Basu M, Ukil A. Recent advances in understanding Leishmania donovani
infection: The importance of diverse host regulatory pathways. IUBMB Life 2018; 70:593-601. [PMID: 29684241 DOI: 10.1002/iub.1759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/02/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Amrita Saha
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Moumita Basu
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Anindita Ukil
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| |
Collapse
|
5
|
França-Costa J, Andrade BB, Khouri R, Van Weyenbergh J, Malta-Santos H, da Silva Santos C, Brodyskn CI, Costa JM, Barral A, Bozza PT, Boaventura V, Borges VM. Differential Expression of the Eicosanoid Pathway in Patients With Localized or Mucosal Cutaneous Leishmaniasis. J Infect Dis 2015; 213:1143-7. [PMID: 26582954 DOI: 10.1093/infdis/jiv548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 11/12/2022] Open
Abstract
Unfettered inflammation is thought to play critical role in the development of different clinical forms of tegumentary leishmaniasis. Eicosanoids are potent mediators of inflammation and tightly associated with modulation of immune responses. In this cross-sectional exploratory study, we addressed whether targets from the eicosanoid biosynthetic pathway, assessed by multiplexed expression assays in lesion biopsy and plasma specimens, could highlight a distinct biosignature in patients with mucocutaneous leishmaniasis (MCL) or localized cutaneous leishmaniasis (LCL). Differences in immunopathogenesis between MCL and LCL may result from an imbalance between prostaglandins and leukotrienes, which may serve as targets for future host-directed therapies.
Collapse
Affiliation(s)
| | - Bruno B Andrade
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira
| | - Ricardo Khouri
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ)
| | - Johan Van Weyenbergh
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Belgium
| | - Hayna Malta-Santos
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) Universidade Federal da Bahia, Salvador
| | | | - Cláudia I Brodyskn
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) Universidade Federal da Bahia, Salvador Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo
| | - Jackson M Costa
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ)
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) Universidade Federal da Bahia, Salvador Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo
| | | | - Viviane Boaventura
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) Universidade Federal da Bahia, Salvador
| | - Valeria M Borges
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) Universidade Federal da Bahia, Salvador
| |
Collapse
|
6
|
Saha A, Biswas A, Srivastav S, Mukherjee M, Das PK, Ukil A. Prostaglandin E2 negatively regulates the production of inflammatory cytokines/chemokines and IL-17 in visceral leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2330-9. [PMID: 25049356 DOI: 10.4049/jimmunol.1400399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persistence of intracellular infection depends on the exploitation of factors that negatively regulate the host immune response. In this study, we elucidated the role of macrophage PGE2, an immunoregulatory lipid, in successful survival of Leishmania donovani, causative agent of the fatal visceral leishmaniasis. PGE2 production was induced during infection and resulted in increased cAMP level in peritoneal macrophages through G protein-coupled E-series prostanoid (EP) receptors. Among four different EPs (EP1-4), infection upregulated the expression of only EP2, and individual administration of either EP2-specific agonist, butaprost, or 8-Br-cAMP, a cell-permeable cAMP analog, promoted parasite survival. Inhibition of cAMP also induced generation of reactive oxygen species, an antileishmanial effector molecule. Negative modulation of PGE2 signaling reduced infection-induced anti-inflammatory cytokine polarization and enhanced inflammatory chemokines, CCL3 and CCL5. Effect of PGE2 on cytokine and chemokine production was found to be differentially modulated by cAMP-dependent protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC). PGE2-induced decreases in TNF-α and CCL5 were mediated specifically by PKA, whereas administration of brefeldin A, an EPAC inhibitor, could reverse decreased production of CCL3. Apart from modulating inflammatory/anti-inflammatory balance, PGE2 inhibited antileishmanial IL-17 cytokine production in splenocyte culture. Augmented PGE2 production was also found in splenocytes of infected mice, and administration of EP2 antagonist in mice resulted in reduced liver and spleen parasite burden along with host-favorable T cell response. These results suggest that Leishmania facilitates an immunosuppressive environment in macrophages by PGE2-driven, EP2-mediated cAMP signaling that is differentially regulated by PKA and EPAC.
Collapse
Affiliation(s)
- Amrita Saha
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India; and
| | - Arunima Biswas
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Supriya Srivastav
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Madhuchhanda Mukherjee
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India; and
| |
Collapse
|