1
|
Choi B, Vu HT, Vu HT, Radwanska M, Magez S. Advances in the Immunology of the Host-Parasite Interactions in African Trypanosomosis, including Single-Cell Transcriptomics. Pathogens 2024; 13:188. [PMID: 38535532 PMCID: PMC10975194 DOI: 10.3390/pathogens13030188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/11/2025] Open
Abstract
Trypanosomes are single-celled extracellular parasites that infect mammals, including humans and livestock, causing global public health concerns and economic losses. These parasites cycle between insect vectors, such as tsetse flies and vertebrate hosts, undergoing morphological, cellular, and biochemical changes. They have remarkable immune evasion mechanisms to escape the host's innate and adaptive immune responses, such as surface coat antigenic variation and the induction of the loss of specificity and memory of antibody responses, enabling the prolongation of infection. Since trypanosomes circulate through the host body in blood and lymph fluid and invade various organs, understanding the interaction between trypanosomes and tissue niches is essential. Here, we present an up-to-date overview of host-parasite interactions and survival strategies for trypanosomes by introducing and discussing the latest studies investigating the transcriptomics of parasites according to life cycle stages, as well as host cells in various tissues and organs, using single-cell and spatial sequencing applications. In recent years, this information has improved our understanding of trypanosomosis by deciphering the diverse populations of parasites in the developmental process, as well as the highly heterogeneous immune and tissue-resident cells involved in anti-trypanosome responses. Ultimately, the goal of these approaches is to gain an in-depth understanding of parasite biology and host immunity, potentially leading to new vaccination and therapeutic strategies against trypanosomosis.
Collapse
Affiliation(s)
- Boyoon Choi
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Biochemistry and Microbiology WE10, Ghent University, 9000 Ghent, Belgium
| | - Hien Thi Vu
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Hai Thi Vu
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Biochemistry and Microbiology WE10, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Pham HTT, Magez S, Choi B, Baatar B, Jung J, Radwanska M. Neutrophil metalloproteinase driven spleen damage hampers infection control of trypanosomiasis. Nat Commun 2023; 14:5418. [PMID: 37669943 PMCID: PMC10480172 DOI: 10.1038/s41467-023-41089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Recent blood transcriptomic analysis of rhodesiense sleeping sickness patients has revealed that neutrophil signature genes and activation markers constitute the top indicators of trypanosomiasis-associated inflammation. Here, we show that Trypanosoma brucei infection results in expansion and differentiation of four splenic neutrophil subpopulations, including Mki67+Birc5+Gfi1+Cebpe+ proliferation-competent precursors, two intermediate immature subpopulations and Cebpb+Spi1+Irf7+Mcl1+Csf3r+ inflammation reprogrammed mature neutrophils. Transcriptomic scRNA-seq profiling identified the largest immature subpopulation by Mmp8/9 positive tertiary granule markers. We confirmed the presence of both metalloproteinases in extracellular spleen homogenates and plasma. During infection, these enzymes digest extracellular matrix components in the absence of sufficient TIMP inhibitory activity, driving remodeling of the spleen follicular architecture. Neutrophil depletion prevents the occurrence of organ damage, resulting in increased plasma cell numbers and prolonged host survival. We conclude that trypanosomiasis-associated neutrophil activation is a major contributor to the destruction of the secondary lymphoid architecture, required for maintaining an efficient adaptive immune response.
Collapse
Affiliation(s)
- Hien Thi Thu Pham
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Boyoon Choi
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bolortsetseg Baatar
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
| | - Joohee Jung
- Duksung Women's University, Seoul, South Korea
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Romero-Ramirez A, Casas-Sánchez A, Autheman D, Duffy CW, Brandt C, Clare S, Harcourt K, André MR, de Almeida Castilho Neto KJG, Teixeira MMG, Machado RZ, Coombes J, Flynn RJ, Wright GJ, Jackson AP. Vivaxin genes encode highly immunogenic, non-variant antigens on the Trypanosoma vivax cell-surface. PLoS Negl Trop Dis 2022; 16:e0010791. [PMID: 36129968 PMCID: PMC9529106 DOI: 10.1371/journal.pntd.0010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/03/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma vivax is a unicellular hemoparasite, and a principal cause of animal African trypanosomiasis (AAT), a vector-borne and potentially fatal livestock disease across sub-Saharan Africa. Previously, we identified diverse T. vivax-specific genes that were predicted to encode cell surface proteins. Here, we examine the immune responses of naturally and experimentally infected hosts to these unique parasite antigens, to identify immunogens that could become vaccine candidates. Immunoprofiling of host serum shows that one particular family (Fam34) elicits a consistent IgG antibody response. This gene family, which we now call Vivaxin, encodes at least 124 transmembrane glycoproteins that display quite distinct expression profiles and patterns of genetic variation. We focused on one gene (viv-β8) that encodes one particularly immunogenic vivaxin protein and which is highly expressed during infections but displays minimal polymorphism across the parasite population. Vaccination of mice with VIVβ8 adjuvanted with Quil-A elicits a strong, balanced immune response and delays parasite proliferation in some animals but, ultimately, it does not prevent disease. Although VIVβ8 is localized across the cell body and flagellar membrane, live immunostaining indicates that VIVβ8 is largely inaccessible to antibody in vivo. However, our phylogenetic analysis shows that vivaxin includes other antigens shown recently to induce immunity against T. vivax. Thus, the introduction of vivaxin represents an important advance in our understanding of the T. vivax cell surface. Besides being a source of proven and promising vaccine antigens, the gene family is clearly an important component of the parasite glycocalyx, with potential to influence host-parasite interactions. Animal African trypanosomiasis (AAT) is an important livestock disease throughout sub-Saharan Africa and beyond. AAT is caused by Trypanosoma vivax, among other species, a unicellular parasite that is spread by biting tsetse flies and multiplies in the bloodstream and other tissues, leading to often fatal neurological conditions if untreated. Although concerted drug treatment and vector eradication programmes have succeeded in controlling Human African trypanosomiasis, AAT continues to adversely affect animal health and impede efficient food production and economic development in many less-developed countries. In this study, we attempted to identify parasite surface proteins that stimulated the strongest immune responses in naturally infected animals, as the basis for a vaccine. We describe the discovery of a new, species-specific protein family in T. vivax, which we call vivaxin. We show that one vivaxin protein (VIVβ8) is surface expressed and retards parasite proliferation when used to immunize mice, but does not prevent infection. Nevertheless, we also reveal that vivaxin includes another protein previously shown to induce protective immunity (IFX/VIVβ1). Besides its great potential for novel approaches to AAT control, the vivaxin family is revealed as a significant component of the T. vivax cell surface and may have important, species-specific roles in host interactions.
Collapse
Affiliation(s)
- Alessandra Romero-Ramirez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Aitor Casas-Sánchez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Delphine Autheman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Craig W. Duffy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cordelia Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Marcos Rogério André
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Kayo José Garcia de Almeida Castilho Neto
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rosangela Zacharias Machado
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Janine Coombes
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, United Kingdom
| | - Robin J. Flynn
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Waterford Institute of Technology, Waterford, Ireland
| | - Gavin J. Wright
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew P. Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Jacobs SH, Dóró E, Hammond FR, Nguyen-Chi ME, Lutfalla G, Wiegertjes GF, Forlenza M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021; 10:64520. [PMID: 34114560 PMCID: PMC8238505 DOI: 10.7554/elife.64520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterise their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterised by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge, this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.
Collapse
Affiliation(s)
- Sem H Jacobs
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Eva Dóró
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. Pathogens 2021; 10:pathogens10060679. [PMID: 34072674 PMCID: PMC8229994 DOI: 10.3390/pathogens10060679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites affecting humans, livestock and game animals. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense are human infective sub-species of T. brucei causing human African trypanosomiasis (HAT—sleeping sickness). The related T. b. brucei parasite lacks the resistance to survive in human serum, and only inflicts animal infections. Animal trypanosomiasis (AT) is not restricted to Africa, but is present on all continents. T. congolense and T. vivax are the most widespread pathogenic trypanosomes in sub-Saharan Africa. Through mechanical transmission, T. vivax has also been introduced into South America. T. evansi is a unique animal trypanosome that is found in vast territories around the world and can cause atypical human trypanosomiasis (aHT). All salivarian trypanosomes are well adapted to survival inside the host’s immune system. This is not a hostile environment for these parasites, but the place where they thrive. Here we provide an overview of the latest insights into the host-parasite interaction and the unique survival strategies that allow trypanosomes to outsmart the immune system. In addition, we review new developments in treatment and diagnosis as well as the issues that have hampered the development of field-applicable anti-trypanosome vaccines for the implementation of sustainable disease control.
Collapse
|
7
|
Magez S, Pinto Torres JE, Obishakin E, Radwanska M. Infections With Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Front Immunol 2020; 11:382. [PMID: 32218784 PMCID: PMC7078162 DOI: 10.3389/fimmu.2020.00382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites that affect humans, livestock, and game animals around the world. Through co-evolution with the mammalian immune system, trypanosomes have developed defense mechanisms that allow them to thrive in blood, lymphoid vessels, and tissue environments such as the brain, the fat tissue, and testes. Trypanosomes have developed ways to circumvent antibody-mediated killing and block the activation of the lytic arm of the complement pathway. Hence, this makes the innate immune control of the infection a crucial part of the host-parasite interaction, determining infection susceptibility, and parasitemia control. Indeed, trypanosomes use a combination of several independent mechanisms to avoid clearance by the humoral immune system. First, perpetuated antigenic variation of the surface coat allows to escape antibody-mediated elimination. Secondly, when antibodies bind to the coat, they are efficiently transported toward the endocytosis pathway, where they are removed from the coat proteins. Finally, trypanosomes engage in the active destruction of the mammalian humoral immune response. This provides them with a rescue solution in case antigenic variation does not confer total immunological invisibility. Both antigenic variation and B cell destruction pose significant hurdles for the development of anti-trypanosome vaccine strategies. However, developing total immune escape capacity and unlimited growth capabilities within a mammalian host is not beneficial for any parasite, as it will result in the accelerated death of the host itself. Hence, trypanosomes have acquired a system of quorum sensing that results in density-dependent population growth arrest in order to prevent overpopulating the host. The same system could possibly sense the infection-associated host tissue damage resulting from inflammatory innate immune responses, in which case the quorum sensing serves to prevent excessive immunopathology and as such also promotes host survival. In order to put these concepts together, this review summarizes current knowledge on the interaction between trypanosomes and the mammalian innate immune system, the mechanisms involved in population growth regulation, antigenic variation and the immuno-destructive effect of trypanosomes on the humoral immune system. Vaccine trials and a discussion on the role of innate immune modulation in these trials are discussed at the end.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Emmanuel Obishakin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Mekonnen YA, Gültas M, Effa K, Hanotte O, Schmitt AO. Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Front Genet 2019; 10:1095. [PMID: 31803229 PMCID: PMC6872528 DOI: 10.3389/fgene.2019.01095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the health of livestock. Livestock production in Ethiopia is severely hampered by AAT and various controlling measures were not successful to eradicate the disease. AAT affects the indigenous breeds in varying degrees. However, the Sheko breed shows better trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to be associated with its taurine genetic background but the genetic controls of these tolerance attributes of Sheko are not well understood. In order to investigate the level of taurine background in the genome, we compare the genome of Sheko with that of 11 other African breeds. We find that Sheko has an admixed genome composed of taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) method to discover selective sweeps in the Sheko genome. We identify 99 genomic regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes are selected based on their biological importance described in the literature. We also identify 13 overrepresented pathways and 10 master regulators in Sheko using the TRANSPATH database in the geneXplain platform. Most of the pathways are related with oxidative stress responses indicating a possible selection response against the induction of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present for the first time the importance of master regulators involved in trypanotolerance not only for the Sheko breed but also in the context of cattle genomics. Our finding shows that the master regulator Caspase is a key protease which plays a major role for the emergence of adaptive immunity in harmony with the other master regulators. These results suggest that designing and implementing genetic intervention strategies is necessary to improve the performance of susceptible animals. Moreover, the master regulatory analysis suggests potential candidate therapeutic targets for the development of new drugs for trypanosomiasis treatment.
Collapse
Affiliation(s)
- Yonatan Ayalew Mekonnen
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - Kefena Effa
- Animal Biosciences, National Program Coordinator for African Dairy Genetic Gain, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms amd Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Armin O Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Front Immunol 2018; 9:2253. [PMID: 30333827 PMCID: PMC6175991 DOI: 10.3389/fimmu.2018.02253] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Salivarian trypanosomes are single cell extracellular parasites that cause infections in a wide range of hosts. Most pathogenic infections worldwide are caused by one of four major species of trypanosomes including (i) Trypanosoma brucei and the human infective subspecies T. b. gambiense and T. b. rhodesiense, (ii) Trypanosoma evansi and T. equiperdum, (iii) Trypanosoma congolense and (iv) Trypanosoma vivax. Infections with these parasites are marked by excessive immune dysfunction and immunopathology, both related to prolonged inflammatory host immune responses. Here we review the classification and global distribution of these parasites, highlight the adaptation of human infective trypanosomes that allow them to survive innate defense molecules unique to man, gorilla, and baboon serum and refer to the discovery of sexual reproduction of trypanosomes in the tsetse vector. With respect to the immunology of mammalian host-parasite interactions, the review highlights recent findings with respect to the B cell destruction capacity of trypanosomes and the role of T cells in the governance of infection control. Understanding infection-associated dysfunction and regulation of both these immune compartments is crucial to explain the continued failures of anti-trypanosome vaccine developments as well as the lack of any field-applicable vaccine based anti-trypanosomosis intervention strategy. Finally, the link between infection-associated inflammation and trypanosomosis induced anemia is covered in the context of both livestock and human infections.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Nick Vereecke
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Violette Deleeuw
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joar Pinto
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Stijlemans B, Radwanska M, De Trez C, Magez S. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses? Front Immunol 2017; 8:582. [PMID: 28596768 PMCID: PMC5442186 DOI: 10.3389/fimmu.2017.00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023] Open
Abstract
African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i) early parasite diagnosis, (ii) anti-trypanosome (drugs) treatment, and (iii) anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Structural Biology Research Centre (SBRC), VIB, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| |
Collapse
|
11
|
Cnops J, Kauffmann F, De Trez C, Baltz T, Keirsse J, Radwanska M, Muraille E, Magez S. Maintenance of B cells during chronic murine Trypanosoma brucei gambiense infection. Parasite Immunol 2016; 38:642-7. [PMID: 27353256 DOI: 10.1111/pim.12344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/24/2016] [Indexed: 12/01/2022]
Abstract
African trypanosomosis is a debilitating parasitic disease occurring in large parts of sub-Saharan Africa. Trypanosoma brucei gambiense accounts for 98% of the reported HAT infections and causes a chronic, gradually progressing disease. Multiple experimental murine models for trypanosomosis have demonstrated inflammation-dependent apoptosis of splenic follicular B (FoB) cells and the destruction of B-cell memory against previously encountered pathogens. Here, we report that during murine infection with a chronic T. b. gambiense field isolate, FoB cells are retained. This coincided with reduced levels of IFN-γ and TNF-α during the acute phase of the infection. This result suggests that in chronic infections with low virulent parasites, less inflammation is elicited and consequently no FoB cell destruction occurs.
Collapse
Affiliation(s)
- J Cnops
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - F Kauffmann
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - C De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - T Baltz
- UMR 5234, Centre National de Recherche Scientifique, IFR66, Université Bordeaux 2, Bordeaux, France
| | - J Keirsse
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,VIB Laboratory of Myeloid Cell Immunology, Brussels, Belgium
| | - M Radwanska
- Ghent University Global Campus, Incheon, Korea
| | - E Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium.,Laboratoire de Parasitologie, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - S Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium. .,Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium. .,Ghent University Global Campus, Incheon, Korea.
| |
Collapse
|
12
|
Cnops J, Bockstal V, De Trez C, Miquel MC, Radwanska M, Magez S. Curative drug treatment of trypanosomosis leads to the restoration of B-cell lymphopoiesis and splenic B-cell compartments. Parasite Immunol 2015; 37:485-91. [PMID: 26072963 DOI: 10.1111/pim.12209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/22/2015] [Indexed: 11/28/2022]
Abstract
African trypanosomosis is a parasitic disease affecting both humans (sleeping sickness) and animals (nagana). In murine trypanosomosis, the B-cell compartment is rapidly destroyed after infection. In addition, B-cell lymphopoiesis in the bone marrow is abrogated, B-cell subsets in the spleen are irreversibly depleted, and B-cell memory is destroyed. Here, we investigated the effect of cure of infection on the B-cell compartment. Suramin and diminazene aceturate were used in this study as these drugs exhibit different modes of uptake and different mechanisms of trypanocidal action. Curative drug treatment of trypanosomosis infection led to the re-initiation of B-cell lymphopoiesis in the bone marrow, and to the repopulation of splenic B-cell subsets, independent of the drug used. Neither of these drugs by itself induced measurable effects on B-cell lymphopoiesis in the bone marrow or B-cell homoeostasis in the spleen in healthy, naïve animals.
Collapse
Affiliation(s)
- J Cnops
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Structural Biology, VIB, Brussels, Belgium
| | - V Bockstal
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Structural Biology, VIB, Brussels, Belgium
| | - C De Trez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Structural Biology, VIB, Brussels, Belgium
| | - M C Miquel
- University of Barcelona, Barcelona, Spain
| | - M Radwanska
- Songdo Global University Foundation, Incheon, South Korea
| | - S Magez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
13
|
Cnops J, De Trez C, Bulte D, Radwanska M, Ryffel B, Magez S. IFN-γ mediates early B-cell loss in experimental African trypanosomosis. Parasite Immunol 2015; 37:479-84. [PMID: 26079128 DOI: 10.1111/pim.12208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
African trypanosomes infect humans and animals throughout the African continent. These parasites maintain chronic infections by various immune evasion strategies. While antigenic variation of their surface coat is the most studied strategy linked to evading the host humoral response, African trypanosomes also induce impaired B-cell lymphopoiesis, the destruction of the splenic B-cell compartment and abrogation of protective memory responses. Here we investigate the mechanism of follicular B-cell destruction. We show that during infection follicular B cells undergo apoptosis, correlating to enhanced Fas death receptor surface expression. Investigation of various type 1 cytokine knockout mice indicates a crucial role of IFN-γ in the early onset of FoB cell destruction. Indeed, both IFN-γ(-/-) and IFN-γR(-/-) mice are protected from trypanosomosis-associated FoB cell depletion, exhibiting an inhibition of B-cell apoptosis as well as a reduced activation of FoB cells during the first week post-infection. The data presented herein offer new insights into B-cell dysfunctioning during experimental African trypanosome infections.
Collapse
Affiliation(s)
- J Cnops
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology SBRC, VIB, Brussels, Belgium
| | - C De Trez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology SBRC, VIB, Brussels, Belgium
| | - D Bulte
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology SBRC, VIB, Brussels, Belgium
| | - M Radwanska
- Ghent University Global Campus, Incheon, South Korea
| | - B Ryffel
- Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-University of Orleans and IDM, University of Cape Town, Cape Town, South Africa
| | - S Magez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology SBRC, VIB, Brussels, Belgium
| |
Collapse
|
14
|
Camejo MI, Spencer LM, Núñez A. TNF-alpha in bulls experimentally infected with Trypanosoma vivax: a pilot study. Vet Immunol Immunopathol 2014; 162:192-7. [PMID: 25464824 DOI: 10.1016/j.vetimm.2014.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022]
Abstract
There are few studies about the immune response during trypanosomosis in cattle. The objective of this research was to evaluate the effect of experimental infection with Trypanosoma vivax (T. vivax) on serum levels of TNF-alpha in bulls and its relationship to hematocrit, body temperature and parasitemia. Two adult crossbred bulls were infected experimentally with T. vivax and two were used as controls. The bulls were evaluated during a 64 day period in terms of temperature, hematocrit, and parasitemia. Serum TNF-alpha levels were determined by ELISA, using an antibody specific for bovine. TNF-alpha in serum began rising on the seventh day after infection and reached a peak on day 40 of post-infection, then dropped. The lowest hematocrit levels corresponded to the upper levels of TNF-alpha, for each animal. In conclusion, the experimental infection of cattle with T. vivax promotes the release of TNF-alpha, demonstrating a pro-inflammatory immune response to this hemotropic parasite. Moreover, the lowest hematocrit levels coincide with high concentrations of TNF-alpha, suggesting that this cytokine can be linked to the observed anemia during the course of infection by T. vivax in cattle.
Collapse
Affiliation(s)
- María I Camejo
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela.
| | - Lilian M Spencer
- Departamento de Biología Celular, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela
| | - Armando Núñez
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela; Facultad de Ciencias Veterinarias, Universidad Nacional Experimental Rómulo Gallegos, San Juan de Los Morros, Estado Guárico, Venezuela
| |
Collapse
|
15
|
Abstract
African trypanosomes have been around for more than 100 million years, and have adapted to survival in a very wide host range. While various indigenous African mammalian host species display a tolerant phenotype towards this parasitic infection, and hence serve as perpetual reservoirs, many commercially important livestock species are highly disease susceptible. When considering humans, they too display a highly sensitive disease progression phenotype for infections with Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, while being intrinsically resistant to infections with other trypanosome species. As extracellular trypanosomes proliferate and live freely in the bloodstream and lymphatics, they are constantly exposed to the immune system. Due to co-evolution, this environment however no longer poses a hostile threat, but has become the niche environment where trypanosomes thrive and obligatory await transmission through the bites of tsetse flies or other haematophagic vectors, ideally without causing severe side infection-associated pathology to their host. Hence, African trypanosomes have acquired various mechanisms to manipulate and control the host immune response, evading effective elimination. Despite the extensive research into trypanosomosis over the past 40 years, many aspects of the anti-parasite immune response remain to be solved and no vaccine is currently available. Here we review the recent work on the different escape mechanisms employed by African Trypanosomes to ensure infection chronicity and transmission potential.
Collapse
|