1
|
Fichorova RN, DeLong AK, Cu-Uvin S, King CC, Jamieson DJ, Klein RS, Sobel JD, Vlahov D, Yamamoto HS, Mayer KH. Protozoan-Viral-Bacterial Co-Infections Alter Galectin Levels and Associated Immunity Mediators in the Female Genital Tract. Front Cell Infect Microbiol 2021; 11:649940. [PMID: 34422675 PMCID: PMC8375472 DOI: 10.3389/fcimb.2021.649940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/29/2021] [Indexed: 01/05/2023] Open
Abstract
Co-infections with sexually transmittable pathogens are common and more likely in women with disturbed vaginal bacteriome. Among those pathogens, the protozoan parasite Trichomonas vaginalis (TV) is most common after accounting for the highly persistent DNA viruses human papillomavirus (HPV) and genital herpes. The parasitic infection often concurs with the dysbiotic syndrome diagnosed as bacterial vaginosis (BV) and both are associated with risks of superimposed viral infections. Yet, the mechanisms of microbial synergisms in evading host immunity remain elusive. We present clinical and experimental evidence for a new role of galectins, glycan-sensing family of proteins, in mixed infections. We assessed participants of the HIV Epidemiology Research Study (HERS) at each of their incident TV visits (223 case visits) matched to controls who remained TV-negative throughout the study. Matching criteria included age, race, BV (by Nugent score), HIV status, hysterectomy, and contraceptive use. Non-matched variables included BV status at 6 months before the matched visit, and variables examined at baseline, within 6 months of and/or at the matched visit e.g. HSV-2, HPV, and relevant laboratory and socio-demographic parameters. Conditional logistic regression models using generalized estimating equations calculated odds ratios (OR) for incident TV occurrence with each log10 unit higher cervicovaginal concentration of galectins and cytokines. Incident TV was associated with higher levels of galectin-1, galectin-9, IL-1β and chemokines (ORs 1.53 to 2.91, p <0.001). Galectin-9, IL-1β and chemokines were up and galectin-3 down in TV cases with BV or intermediate Nugent versus normal Nugent scores (p <0.001). Galectin-9, IL-1β and chemokines were up in TV-HIV and down in TV-HPV co-infections. In-vitro, TV synergized with its endosymbiont Trichomonasvirus (TVV) and BV bacteria to upregulate galectin-1, galectin-9, and inflammatory cytokines. The BV-bacterium Prevotella bivia alone and together with TV downregulated galectin-3 and synergistically upregulated galectin-1, galectin-9 and IL-1β, mirroring the clinical findings of mixed TV–BV infections. P. bivia also downregulated TVV+TV-induced anti-viral response e.g. IP-10 and RANTES, providing a mechanism for conducing viral persistence in TV-BV co-infections. Collectively, the experimental and clinical data suggest that galectin-mediated immunity may be dysregulated and exploited by viral–protozoan–bacterial synergisms exacerbating inflammatory complications from dysbiosis and sexually transmitted infections.
Collapse
Affiliation(s)
- Raina N Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Allison K DeLong
- Center for Statistical Sciences, School of Public Health, Brown University, Providence, RI, United States
| | - Susan Cu-Uvin
- Department of Obstetrics and Gynecology, Brown University, The Miriam Hospital, Providence, RI, United States
| | - Caroline C King
- National Center for Chronic Disease Prevention and Health Promotion/Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Denise J Jamieson
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert S Klein
- Hudson Infectious Diseases Associates, Briarcliff Manor, NY, United States
| | - Jack D Sobel
- Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, MI, United States
| | - David Vlahov
- Department of Community Health Systems, School of Nursing, University of California at San Francisco, San Francisco, CA, United States
| | - Hidemi S Yamamoto
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Kenneth H Mayer
- The Fenway Institute, Fenway Health, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Is there association between Trichomonas vaginalis infection and prostate cancer risk?: A systematic review and meta-analysis. Microb Pathog 2019; 137:103752. [DOI: 10.1016/j.micpath.2019.103752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/15/2019] [Indexed: 12/21/2022]
|
3
|
Kalia N, Singh J, Kaur M. Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions. Front Immunol 2019; 10:2034. [PMID: 31555269 PMCID: PMC6722227 DOI: 10.3389/fimmu.2019.02034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recurrent vulvovaginal infections (RVVI), a devastating group of mucosal infection, are severely affecting women's quality of life. Our understanding of the vaginal defense mechanisms have broadened recently with studies uncovering the inflammatory nature of bacterial vaginosis, inflammatory responses against novel virulence factors, innate Type 17 cells/IL-17 axis, neutrophils mediated killing of pathogens by a novel mechanism, and oxidative stress during vaginal infections. However, the pathogens have fine mechanisms to subvert or manipulate the host immune responses, hijack them and use them for their own advantage. The odds of hijacking increases, due to impaired immune responses, the net magnitude of which is the result of numerous genetic variations, present in multiple host genes, detailed in this review. Thus, by underlining the role of the host immune responses in disease etiology, modern research has clarified a major hypothesis shift in the pathophilosophy of RVVI. This knowledge can further be used to develop efficient immune-based diagnosis and treatment strategies for this enigmatic disease conditions. As for instance, plasma-derived MBL replacement, adoptive T-cell, and antibody-based therapies have been reported to be safe and efficacious in infectious diseases. Therefore, these emerging immune-therapies could possibly be the future therapeutic options for RVVI.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
4
|
Abstract
Parasitic infections are responsible for significant morbidity and mortality throughout the world. Management strategies rely primarily on antiparasitic drugs that have side effects and risk of drug resistance. Therefore, novel strategies are needed for treatment of parasitic infections. Host-directed therapy (HDT) is a viable alternative, which targets host pathways responsible for parasite invasion/survival/pathogenicity. Recent innovative combinations of genomics, proteomics and computational biology approaches have led to discovery of several host pathways that could be promising targets for HDT for treating parasitic infections. Herein, we review major advances in HDT for parasitic disease with regard to core regulatory pathways and their interactions.
Collapse
|
5
|
Xu JB, Zhang YL, Huang J, Lu SJ, Sun Q, Chen PX, Jiang P, Qiu ZE, Jiang FN, Zhu YX, Lai DH, Zhong WD, Lun ZR, Zhou WL. Increased intracellular Cl - concentration mediates Trichomonas vaginalis-induced inflammation in the human vaginal epithelium. Int J Parasitol 2019; 49:697-704. [PMID: 31254529 DOI: 10.1016/j.ijpara.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 11/15/2022]
Abstract
Trichomonas vaginalis is a primary urogenital parasite that causes trichomoniasis, a common sexually transmitted disease. As the first line of host defense, vaginal epithelial cells play critical roles in orchestrating vaginal innate immunity and modulate intracellular Cl- homeostasis via the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that plays positive roles in regulating nuclear factor-κB (NF-κB) signalling. However, the association between T. vaginalis infection and intracellular Cl- disequilibrium remains elusive. This study showed that after T. vaginalis infection, CFTR was markedly down-regulated by cysteine proteases in vaginal epithelial cells. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to NF-κB signalling activation via serum- and glucocorticoid-inducible kinase-1. Moreover, heightened [Cl-]i and activated NF-κB signalling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP through NF-κB-mediated up-regulation of phosphodiesterase 4. The results conclusively revealed that the intracellular Cl- of the human vaginal epithelium could be dynamically modulated by T. vaginalis, which contributed to mediation of epithelial inflammation in the human vagina.
Collapse
Affiliation(s)
- Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shen-Jiao Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng-Xiao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ping Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - De-Hua Lai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Nemati M, Malla N, Yadav M, Khorramdelazad H, Jafarzadeh A. Humoral and T cell-mediated immune response against trichomoniasis. Parasite Immunol 2018; 40. [PMID: 29266263 DOI: 10.1111/pim.12510] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Trichomonas vaginalis (T. vaginalis) infection leads to the synthesis of specific antibodies in the serum and local secretions. The profile of T. vaginalis-specific antibodies and T cell-mediated immune responses may influence the outcome of infection, towards parasite elimination, persistence or pathological reactions. Studies have indicated that Th1-, Th17- and Th22 cell-related cytokines may be protective or pathogenic, whereas Th2- and Treg cell-related cytokines can exert anti-inflammatory effects during T. vaginalis infection. A number of T. vaginalis-related components such as lipophosphoglycan (TvLPG), α-actinin, migration inhibitory factor (TvMIF), pyruvate:ferredoxin oxidoreductase (PFO), legumain-1 (TvLEGU-1), adhesins and cysteine proteases lead to the induction of specific antibodies. T. vaginalis has acquired several strategies to evade the humoral immune responses such as degradation of immunoglobulins by cysteine proteases, antigenic variation and killing of antibody-producing B cells. The characterization of the T. vaginalis-specific antibodies to significant immunogenic molecules and formulation of strategies to promote their induction in vaginal mucosa may reveal their potential protective effects against trichomoniasis. In this review, we discuss the current understanding of antibody and T cell-mediated immune responses to T. vaginalis and highlight novel insights into the possible role of immune responses in protection against parasite.
Collapse
Affiliation(s)
- M Nemati
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - N Malla
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - M Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - H Khorramdelazad
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - A Jafarzadeh
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
7
|
Saadeh HA, Khasawneh MA, Abu-Zeid YA, El-Haty IA, Mubarak MS, Nsangou SP, Goyal K, Sehgal R, Marco-Contelles J, Samadi A. Novel 5-Nitroimidazole and 5-Nitrothiazole Piperazine Derivatives and Their Antiparasitic Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201700348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Haythem A. Saadeh
- Department of Chemistry, College of Science; United Arab Emirates University; Al Ain 15551 UAE
- Department of Chemistry, Faculty of Science; The University of Jordan; Amman 11942 Jordan
| | - Mohammad A. Khasawneh
- Department of Chemistry, College of Science; United Arab Emirates University; Al Ain 15551 UAE
| | - Youssif A. Abu-Zeid
- Department of Biology, College of Science; United Arab Emirates University; Al Ain 15551 UAE
| | - Ismail A. El-Haty
- Department of Chemistry, College of Science; United Arab Emirates University; Al Ain 15551 UAE
| | - Mohammad S. Mubarak
- Department of Chemistry, Faculty of Science; The University of Jordan; Amman 11942 Jordan
| | - Sylvain Pechangou Nsangou
- Department of Biochemistry University of Yaounde1, PO Box 812, Yaounde-Cameroon. Ex-Fellow RTF_DCS NAM ST in the Department of Medical Parasitology at; Postgraduate Institute of Medical Education and Research; Chandigarh India- 160012
| | - Kapil Goyal
- Medical Parasitology; Postgraduate Institute of Medical Education and Research; Chandigarh India- 160012
| | - Rakesh Sehgal
- Medical Parasitology; Postgraduate Institute of Medical Education and Research; Chandigarh India- 160012
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/ Juan de la Cierva 3; 28006- Madrid Spain
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science; United Arab Emirates University; Al Ain 15551 UAE
| |
Collapse
|
8
|
Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biomed J 2016; 39:234-243. [PMID: 27793265 PMCID: PMC6138788 DOI: 10.1016/j.bj.2016.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Menezes CB, Frasson AP, Tasca T. Trichomoniasis - are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:404-419. [PMID: 28357378 PMCID: PMC5354568 DOI: 10.15698/mic2016.09.526] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 02/03/2023]
Abstract
ETIOLOGY Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in the world. Transmission: Trichomoniasis is transmitted by sexual intercourse and transmission via fomites is rare. Epidemiology, incidence and prevalence: The WHO estimates an incidence of 276 million new cases each year and prevalence of 187 million of infected individuals. However, the infection is not notifiable. Pathology/Symptomatology: The T. vaginalis infection results in a variety of clinical manifestations - in most cases the patients are asymptomatic, but some may develop signs typically associated to the disease. Importantly, the main issue concerning trichomoniasis is its relationship with serious health consequences such as cancer, adverse pregnancy outcomes, infertility, and HIV acquisition. Molecular mechanisms of infection: To achieve success in parasitism trichomonads develop a complex process against the host cells that includes dependent- and independent-contact mechanisms. This multifactorial pathogenesis includes molecules such as soluble factors, secreted proteinases, adhesins, lipophosphoglycan that culminate in cytoadherence and cytotoxicity against the host cells. Treatment and curability: The treatment with metronidazole or tinidazole is recommended; however, cure failures remain problematic due to noncompliance, reinfection and/or lack of treatment of sexual partners, inaccurate diagnosis, or drug resistance. Therefore, new therapeutic alternatives are urgently needed. Protection: Strategies for protection including sexual behavior, condom usage, and therapy have not contributed to the decrease on disease prevalence, pointing to the need for innovative approaches. Vaccine development has been hampered by the lack of long-lasting humoral immunity associated to the absence of good animal models.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|