1
|
Tumwine-Downey I, Deroost K, Levy P, McLaughlin S, Hosking C, Langhorne J. Antibody-dependent immune responses elicited by blood stage-malaria infection contribute to protective immunity to the pre-erythrocytic stages. CURRENT RESEARCH IN IMMUNOLOGY 2022; 4:100054. [PMID: 36593995 PMCID: PMC9803926 DOI: 10.1016/j.crimmu.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Advances in transcriptomics and proteomics have revealed that different life-cycle stages of the malaria parasite, Plasmodium, share antigens, thus allowing for the possibility of eliciting immunity to a parasite life-cycle stage that has not been experienced before. Using the Plasmodium chabaudi (AS strain) model of malaria in mice, we investigated how isolated exposure to blood-stage infection, bypassing a liver-stage infection, yields significant protection to sporozoite challenge resulting in lower liver parasite burdens. Antibodies are the main immune driver of this protection. Antibodies induced by blood-stage infection recognise proteins on the surface of sporozoites and can impair sporozoite gliding motility in vitro, suggesting a possible function in vivo. Furthermore, mice lacking B cells and/or secreted antibodies are not protected against a sporozoite challenge in mice that had a previous blood-stage infection. Conversely, effector CD4+ and CD8+ T cells do not seem to play a role in protection from sporozoite challenge of mice previously exposed only to the blood stages of P. chabaudi. The protective response against pre-erythrocytic stages can be induced by infections initiated by serially passaged blood-stage parasites as well as recently mosquito transmitted parasites and is effective against a different strain of P. chabaudi (CB strain), but not against another rodent malaria species, P. yoelii. The possibility to induce protective cross-stage antibodies advocates the need to consider both stage-specific and cross-stage immune responses to malaria, as natural infection elicits exposure to all life-cycle stages. Future investigation into these cross-stage antibodies allows the opportunity for candidate antigens to contribute to malaria vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Langhorne
- Corresponding author. Malaria Immunology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Cai J, Chen S, Zhu F, Lu X, Liu T, Xu W. Whole-Killed Blood-Stage Vaccine: Is It Worthwhile to Further Develop It to Control Malaria? Front Microbiol 2021; 12:670775. [PMID: 33995336 PMCID: PMC8119638 DOI: 10.3389/fmicb.2021.670775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Major challenges have been encountered regarding the development of highly efficient subunit malaria vaccines, and so whole-parasite vaccines have regained attention in recent years. The whole-killed blood-stage vaccine (WKV) is advantageous as it can be easily manufactured and efficiently induced protective immunity against a blood-stage challenge, as well as inducing cross-stage protection against both the liver and sexual-stages. However, it necessitates a high dose of parasitized red blood cell (pRBC) lysate for immunization, and this raises concerns regarding its safety and low immunogenicity. Knowledge of the major components of WKV that can induce or evade the host immune response, and the development of appropriate human-compatible adjuvants will greatly help to optimize the WKV. Therefore, we argue that the further development of the WKV is worthwhile to control and potentially eradicate malaria worldwide.
Collapse
Affiliation(s)
- Jingjing Cai
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Suilin Chen
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Feng Zhu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Taiping Liu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Wenyue Xu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| |
Collapse
|
3
|
Fu Y, Lu X, Zhu F, Zhao Y, Ding Y, Ye L, Guo B, Liu T, Xu W. Improving the immunogenicity and protective efficacy of a whole-killed malaria blood-stage vaccine by chloroquine. Parasite Immunol 2020; 42:e12682. [PMID: 31644820 DOI: 10.1111/pim.12682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
A whole-killed malaria blood-stage vaccine (WKV) is promising in reducing the morbidity and mortality of malaria patients, but its efficacy needs to be improved. We found that the antimalarial drug chloroquine could augment the protective efficacy of the WKV of Plasmodium yoelii. The direct antimalarial effect of chloroquine on parasites during immunization could be excluded, as the administration of chloroquine or chloroquine plus alum every two weeks had a slight effect on parasitemia, and an immunization with NP-KLH (4-hydroxy-3-nitrophenylacetyl Keyhole Limpet Hemocyanin) plus chloroquine could significantly promote the generation of NP-specific antibodies. Additionally, alum was required for chloroquine to augment the immunogenicity of the pRBC lysate. Chloroquine did not promote the parasite-specific CD4+ T-cell responses, but significantly enhanced the WKV-induced germinal centre B cell reactions, class-switch recombination and secretion of functionally protective antibodies to plasmodium. The elevated parasite-specific antibodies were demonstrated to largely contribute to the chloroquine-enhanced protective immunity. Thus, we report that chloroquine could be used as an adjuvant to enhance the protective immunity of WKVs through promoting humoral responses.
Collapse
Affiliation(s)
- Yong Fu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Feng Zhu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yunxiang Zhao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Guo
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Singh SP, Srivastava D, Mishra BN. Genome-wide identification of novel vaccine candidates for Plasmodium falciparum malaria using integrative bioinformatics approaches. 3 Biotech 2017; 7:318. [PMID: 28955615 DOI: 10.1007/s13205-017-0947-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
In spite of decades of malaria research and clinical trials, a fully effective and long-lasting preventive vaccine remains elusive. In the present study, 5370 proteins of Plasmodium falciparum genome were screened for the presence of signal peptide/anchor and GPI anchor motifs. Out of 45 screened surface-associated proteins, 22 were consensually predicted as antigens and had no orthologs in human and mouse except circumsporozoite protein (PF3D7_0304600). Among 22 proteins, 19 were identified as new antigens. In the next step, a total of 4944 peptides were predicted as CD8+ T cell epitopes from 22 probable antigens. Of these, the highest scoring 262 epitopes from each antigen were taken for optimization study in the malaria-endemic regions which covered a broad human population (~93.95%). The predicted epitope 13ILFYFFLWV21 of antigen 6-cysteine (PF3D7_1346800) was binding to the HLA-A*0201 allele with the highest fraction (26%) of immunogenicity in the target populations of North-East Asia, South-East Asia, and sub-Saharan Africa. Therefore, these epitopes are proposed to be favored in vaccine designs against malaria.
Collapse
Affiliation(s)
- Satarudra Prakash Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (Lucknow Campus), Lucknow, 226028 India
| | - Deeksha Srivastava
- Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University (Formerly Known as U.P. Technical University), Lucknow, 226021 India
| | - Bhartendu Nath Mishra
- Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University (Formerly Known as U.P. Technical University), Lucknow, 226021 India
| |
Collapse
|