1
|
Nagraj AK, Shukla M, Kulkarni M, Patil P, Borgave M, Banerjee SK. Reversal of carbapenem resistance in Pseudomonas aeruginosa by camelid single domain antibody fragment (VHH) against the C4-dicarboxylate transporter. J Antibiot (Tokyo) 2024; 77:612-626. [PMID: 38886486 DOI: 10.1038/s41429-024-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024]
Abstract
Antimicrobial resistance is emerging as the new healthcare crisis necessitating the development of newer classes of drugs using non-traditional approaches. Pseudomonas aeruginosa, one of the most common pathogens involved in nosocomial infections, is extremely difficult to treat even with the last resort frontline drug, the carbapenems. As the pathogen has the ability to acquire resistance to new small-molecule antibiotics, being deployed, a novel biological approach has been tried using antibody fragments in combination with carbapenems and β-lactams as adjunct therapy for an enduring solution to the problem. In this study, we developed a camelid antibody fragment (VHH) library against P. aeruginosa and isolated a highly potent hit, PsC23. Mass spectrometry identified the target to be a component of the C4-dicarboxylate transporter that feeds metabolites to the glyoxylate shunt particularly under conditions of oxidative stress. PsC23 is bacteriostatic at a concentration of 1.66 µM (25 µg ml-1) and shows a synergistic effect with both the classes of drugs at an effective concentration of 100-200 nM (1.5-3.0 µg ml-1) when co administered with them. In combination with meropenem the VHH completely cleared the infection from a neutropenic mouse with a carbapenem-resistant P. aeruginosa systemic infection. Blocking the glyoxylate shunt by PsC23 resulted in disruption of energy transduction due to a respiratory shift to the oxygen-depleted TCA cycle causing inhibition of efflux and increased free radical generation from carbapenems and β-lactams exerting a strong bactericidal effect that reversed the resistance to multiple unrelated drugs.
Collapse
Affiliation(s)
| | | | | | - Pratik Patil
- AbGenics Life Sciences Pvt. Ltd, Pune, 411045, India
| | | | | |
Collapse
|
2
|
Tohidi E, Ghaemi M, Golvajouei MS. A review on camelid nanobodies with potential application in veterinary medicine. Vet Res Commun 2024; 48:2051-2068. [PMID: 38869749 DOI: 10.1007/s11259-024-10432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The single variable domains of camelid heavy-chain only antibodies, known as nanobodies, have taken a long journey since their discovery in 1989 until the first nanobody-based drug's entrance to the market in 2022. On account of their unique properties, nanobodies have been successfully used for diagnosis and therapy against various diseases or conditions. Although research on the application of recombinant antibodies has focused on human medicine, the development of nanobodies has paved the way for incorporating recombinant antibody production in favour of veterinary medicine. Currently, despite many efforts in developing these biomolecules with diversified applications, significant opportunities exist for exploiting these highly versatile and cost-effective antibodies in veterinary medicine. The present study attempts to identify existing gaps and shed light on paths for future research by presenting an updated review on camelid nanobodies with potential applications in veterinary medicine.
Collapse
Affiliation(s)
- Emadodin Tohidi
- Biotechnology Division, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mehran Ghaemi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Sadegh Golvajouei
- Biotechnology Division, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Schlör A, Hirschberg S, Amor GB, Meister TL, Arora P, Pöhlmann S, Hoffmann M, Pfaender S, Eddin OK, Kamhieh-Milz J, Hanack K. SARS-CoV-2 neutralizing camelid heavy-chain-only antibodies as powerful tools for diagnostic and therapeutic applications. Front Immunol 2022; 13:930975. [PMID: 36189209 PMCID: PMC9517167 DOI: 10.3389/fimmu.2022.930975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications.ObjectivesIn this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful tools for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity.MethodsFive antibody candidates were selected out of a naïve camelid library by phage display and expressed as full length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron).ResultsAll antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50).ConclusionCollectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy.
Collapse
Affiliation(s)
| | - Stefan Hirschberg
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Transfusion Medicine, Berlin, Germany
| | | | - Toni Luise Meister
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Prerna Arora
- Infection Biology Unit, German Primate Center– Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center– Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center– Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | | | - Julian Kamhieh-Milz
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Transfusion Medicine, Berlin, Germany
- Wimedko GmbH, Berlin, Germany
| | - Katja Hanack
- New/era/mabs GmbH, Potsdam, Germany
- Department of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- *Correspondence: Katja Hanack,
| |
Collapse
|
4
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Pillay TS, Muyldermans S. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Ann Lab Med 2021; 41:549-558. [PMID: 34108282 PMCID: PMC8203438 DOI: 10.3343/alm.2021.41.6.549] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies have proven to be central in the development of diagnostic methods over decades, moving from polyclonal antibodies to the milestone development of monoclonal antibodies. Although monoclonal antibodies play a valuable role in diagnosis, their production is technically demanding and can be expensive. The large size of monoclonal antibodies (150 kDa) makes their re-engineering using recombinant methods a challenge. Single-domain antibodies, such as “nanobodies,” are a relatively new class of diagnostic probes that originated serendipitously during the assay of camel serum. The immune system of the camelid family (camels, llamas, and alpacas) has evolved uniquely to produce heavy-chain antibodies that contain a single monomeric variable antibody domain in a smaller functional unit of 12–15 kDa. Interestingly, the same biological phenomenon is observed in sharks. Since a single-domain antibody molecule is smaller than a conventional mammalian antibody, recombinant engineering and protein expression in vitro using bacterial production systems are much simpler. The entire gene encoding such an antibody can be cloned and expressed in vitro. Single-domain antibodies are very stable and heat-resistant, and hence do not require cold storage, especially when incorporated into a diagnostic kit. Their simple genetic structure allows easy re-engineering of the protein to introduce new antigen-binding characteristics or attach labels. Here, we review the applications of single-domain antibodies in laboratory diagnosis and discuss the future potential in this area.
Collapse
Affiliation(s)
- Tahir S Pillay
- Department of Chemical Pathology and NHLS- Tshwane Academic Division, University of Pretoria, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa.,Department of Chemical Pathology, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
6
|
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, Dos Santos EL, Marinho ACM, Stabeli RG, Fernandes CFC, Pereira SDS. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 2021; 25:439-456. [PMID: 34146333 DOI: 10.1007/s40291-021-00533-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.
Collapse
Affiliation(s)
- Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Rosa Maria de Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Andrelisse Arruda
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Eliza Lima Dos Santos
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Anna Carolina Machado Marinho
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional.Fundação Oswaldo Cruz-USP, Ribeirão Preto, São Paulo, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Brazil.
| |
Collapse
|
7
|
Urine-Based Antigen (Protein) Detection Test for the Diagnosis of Visceral Leishmaniasis. Microorganisms 2020; 8:microorganisms8111676. [PMID: 33126760 PMCID: PMC7693408 DOI: 10.3390/microorganisms8111676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022] Open
Abstract
This review describes and appraises a novel protein-based antigen detection test for visceral leishmaniasis (VL). The test detects in patient’s urine six proteins from Leishmania infantum (chagasi) and Leishmania donovani, the etiological agents of VL. The gold standard test for VL is microscopic observation of the parasites in aspirates from spleen, liver, or bone marrow (and lymph node for dogs). Culture of the parasites or detection of their DNA in these aspirates are also commonly used. Serological tests are available but they cannot distinguish patients with active VL from either healthy subjects exposed to the parasites or from subjects who had a successful VL treatment. An antigen detection test based on the agglutination of anti-leishmania carbohydrates antibody coated latex beads has been described. However, the results obtained with this carbohydrate-based test have been conflicting. Using mass spectrometry, we discovered six L. infantum/L. donovani proteins excreted in the urine of VL patients and used them as markers for the development of a robust mAb-based antigen (protein) detection test. The test is assembled in a multiplexed format to simultaneously detect all six markers. Its initial clinical validation showed a sensitivity of 93% and specificity of 100% for VL diagnosis.
Collapse
|
8
|
Alshamat EA, Kweider M, Soukkarieh C, Zarkawi M, Khalaf HE, Abbady AQ. Phage-nanobody as molecular marker for the detection of Leishmania tropica. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Abu Alshamat E, Kweider M, Abbady AQ. Camel nanobodies: Promising molecular tools against leishmaniasis. Parasite Immunol 2020; 42:e12718. [PMID: 32249437 DOI: 10.1111/pim.12718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/01/2022]
Abstract
AIM To characterize several anti-Leishmania tropica nanobodies and to investigate their effect on Leishmania infection. METHODS Several immunological tests were implied to characterize five different (as confirmed by sequencing) anti-L tropica nanobodies (NbLt05, NbLt06, NbLt14, NbLt24 and NbLt36) against parasite lysates or intact cells from different stages, promastigotes and amastigotes. Direct inhibitory effect of these nanobodies on parasite infection cycle on macrophages was tested in cell culture. RESULTS All the five nanobodies (with distinguished characteristics) were more specific to L tropica than to L major, but could equally recognize the lysate and the outer surface of the intact cells from the two main stages of the parasite. Nanobodies recognized several leishmania antigens (majorly between 75 and 63 kDa), and their proteinaceous nature was confirmed. Because of its role in leishmania life cycle, gp63 was considered a potential antigen candidate for nanobodies, and bioinformatics predicted such interaction. All nanobodies have a negative effect on the infectivity of L tropica, as they decreased the number of infected macrophages and the amastigotes inside those macrophages. CONCLUSION Such anti-leishmania nanobodies, with outstanding characteristics and important target, can be of great use in the development of promising treatment strategies against leishmaniasis.
Collapse
Affiliation(s)
- Enas Abu Alshamat
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Mahmoud Kweider
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdul Qader Abbady
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, AECS, Damascus, Syria
| |
Collapse
|
10
|
Sereno D, Akhoundi M, Sayehmri K, Mirzaei A, Holzmuller P, Lejon V, Waleckx E. Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:E1684. [PMID: 32121441 PMCID: PMC7084391 DOI: 10.3390/ijms21051684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they cause requires the sampling of body fluids (e.g., blood, lymph, peritoneal fluid, cerebrospinal fluid) or organ biopsies (e.g., bone marrow, spleen), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials. Paper selection was based on searches in PubMed, Web of Science, WorldWideScience, SciELO, Embase, and Google. The information of each selected article (n = 333) was classified into different sections and data were extracted from 77 papers. The presence of Trypanosomatidae parasites has been tracked in most of organs or proximal tissues that produce body secretions or appendages, in naturally or experimentally infected hosts. The meta-analysis highlights the paucity of studies on human African trypanosomiasis and an absence on animal trypanosomiasis. Among the collected data high heterogeneity in terms of the I2 statistic (100%) is recorded. A high positivity is recorded for antibody and genetic material detection in urine of patients and dogs suffering leishmaniasis, and of antigens for leishmaniasis and Chagas disease. Data on conjunctival swabs can be analyzed with molecular methods solely for dogs suffering canine visceral leishmaniasis. Saliva and hair/bristles showed a pretty good positivity that support their potential to be used for leishmaniasis diagnosis. In conclusion, our study pinpoints significant gaps that need to be filled in order to properly address the interest of body secretion and hair or bristles for the diagnosis of infections caused by Leishmania and by other Trypanosomatidae parasites.
Collapse
Affiliation(s)
- Denis Sereno
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR MIVEGEC IRD, CNRS, 34032 Montpellier, France
| | - Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, 93000 Bobigny, France;
| | - Kourosh Sayehmri
- Psychosocial Injuries Research Center, Department of Biostatistics, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
| | - Asad Mirzaei
- Parasitology Department, Paramedical School, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Philippe Holzmuller
- CIRAD, UMR ASTRE “Animal, Santé, Territoires, Risques et Ecosystèmes”, F-34398 Montpellier, France;
- ASTRE, CIRAD, INRAE, Université de Montpellier (I-MUSE), 34000 Montpellier, France
| | - Veerle Lejon
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
| | - Etienne Waleckx
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Centro de Investigaciones Regionales «Dr Hideyo Noguchi», Universidad autònoma de yucatán, Merida, Yucatán 97000, Mexico
| |
Collapse
|
11
|
Abeijon C, Dilo J, Tremblay JM, Viana AG, Bueno LL, Carvalho SFG, Fujiwara RT, Shoemaker CB, Campos-Neto A. Use of VHH antibodies for the development of antigen detection test for visceral leishmaniasis. Parasite Immunol 2018; 40:e12584. [PMID: 30120856 PMCID: PMC6220836 DOI: 10.1111/pim.12584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
We have recently developed a sensitive and specific urine‐based antigen detection ELISA for the diagnosis of visceral leishmaniasis (VL). This assay used rabbit IgG and chicken IgY polyclonal antibodies specific for the Leishmania infantum proteins iron superoxide dismutase 1 (Li‐isd1), tryparedoxin1 (Li‐txn1) and nuclear transport factor 2 (Li‐ntf2). However, polyclonal antibodies have limitations for upscaling and continuous supply. To circumvent these hurdles, we began to develop immortalized monoclonal antibodies. We opted for recombinant camelid VHHs because the technology for their production is well established and they do not have Fc, hence providing less ELISA background noise. We report here an assay development using VHHs specific for Li‐isd1 and Li‐ntf2. This new assay was specific and had analytical sensitivity of 15‐45 pg/mL of urine. The clinical sensitivity was comparable to that obtained with the ELISA assembled with conventional rabbit and chicken antibodies to detect these two antigens. Therefore, similar to our former studies with conventional antibodies, the future inclusion of VHH specific for Li‐txn1 and/or other antigens should further increase the sensitivity of the assay. These results confirm that immortalized VHHs can replace conventional antibodies for the development of an accurate and reproducible antigen detection diagnostic test for VL.
Collapse
Affiliation(s)
| | - Julia Dilo
- DetectoGen Inc., Grafton, Massachusetts.,Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Jacqueline M Tremblay
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | | | - Lilian L Bueno
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Charles B Shoemaker
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Antonio Campos-Neto
- DetectoGen Inc., Grafton, Massachusetts.,Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| |
Collapse
|