1
|
Kato S, Koshino A, Lasota J, Komura M, Wang C, Ebi M, Ogasawara N, Kojima K, Tsuzuki T, Kasai K, Takahashi S, Miettinen M, Kasugai K, Inaguma S. Use of SATB2 and CDX2 Immunohistochemistry to Characterize and Diagnose Colorectal Cancer. Appl Immunohistochem Mol Morphol 2024; 32:362-370. [PMID: 39076030 DOI: 10.1097/pai.0000000000001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
SATB2 has been reported to be highly specific for lower gastrointestinal tract tumors. On the basis of its ileum-colon conversion effects, which involve the activation of colonic genes in cooperation with CDX2 and HNF4A, we hypothesized that SATB2 and CDX2 might define the characteristics of colorectal cancers (CRCs). In the present study, the clinicopathologic and immunohistochemical characteristics of 269 CRCs were analyzed according to SATB2 and CDX2 expression. CRCs with SATB2- and/or CDX2- phenotypes showed associations with poorly differentiated histotypes ( P <0.00001), mucus production ( P =0.0019), and mismatch repair-deficient phenotypes ( P <0.00001). SATB2-/CDX2- CRCs were significantly associated with CK20-negativity, with or without CK7 expression ( P <0.00001), as well as with MUC5AC-positivity ( P <0.00001), and CD10-negativity ( P =0.00047). Negativity for SATB2 or CDX2 was associated with the expression of PD-L1 in both all CRC ( P <0.00001) and mismatch repair-proficient CRC ( P =0.000091). Multivariate Cox hazard regression analysis identified negativity for SATB2 and/or CDX2 as potential independent risk factors for patients with CRC. Regarding the diagnostic utility of SATB2, all of the 44 CRC metastases could be diagnosed as colorectal in origin if the immunohistochemical phenotypes (including CK7, CK20, and p53) of the primary lesions and patient history were considered. Among the other 684 tumors, we were unable to distinguish a case of CK7-/CK20+/CDX2+/SATB2+ ovarian mucinous cystadenocarcinoma from metastatic CRC without the patient history and clinical information.
Collapse
Affiliation(s)
- Shunsuke Kato
- Department of Internal Medicine, Division of Gastroenterology
| | - Akira Koshino
- Department of Internal Medicine, Division of Gastroenterology
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Masahide Ebi
- Department of Internal Medicine, Division of Gastroenterology
| | | | | | | | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Kunio Kasugai
- Department of Internal Medicine, Division of Gastroenterology
| | - Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
- Pathology, Nagoya City University East Medical Center, Nagoya, Japan
| |
Collapse
|
2
|
Ito S, Koshino A, Wang C, Otani T, Komura M, Ueki A, Kato S, Takahashi H, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Kasugai K, Takiguchi S, Takahashi S, Inaguma S. Characterisation of colorectal cancer by hierarchical clustering analyses for five stroma-related markers. J Pathol Clin Res 2024; 10:e12386. [PMID: 38890810 PMCID: PMC11187867 DOI: 10.1002/2056-4538.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Evidence for the tumour-supporting capacities of the tumour stroma has accumulated rapidly in colorectal cancer (CRC). Tumour stroma is composed of heterogeneous cells and components including cancer-associated fibroblasts (CAFs), small vessels, immune cells, and extracellular matrix proteins. The present study examined the characteristics of CAFs and collagen, major components of cancer stroma, by immunohistochemistry and Sirius red staining. The expression status of five independent CAF-related or stromal markers, decorin (DCN), fibroblast activation protein (FAP), podoplanin (PDPN), alpha-smooth muscle actin (ACTA2), and collagen, and their association with clinicopathological features and clinical outcomes were analysed. Patients with DCN-high tumours had a significantly worse 5-year survival rate (57.3% versus 79.0%; p = 0.044). Furthermore, hierarchical clustering analyses for these five markers identified three groups that showed specific characteristics: a solid group (cancer cell-rich, DCNLowPDPNLow); a PDPN-dominant group (DCNMidPDPNHigh); and a DCN-dominant group (DCNHighPDPNLow), with a significant association with patient survival (p = 0.0085). Cox proportional hazards model identified the PDPN-dominant group (hazard ratio = 0.50, 95% CI = 0.26-0.96, p = 0.037) as a potential favourable factor compared with the DCN-dominant group. Of note, DCN-dominant tumours showed the most advanced pT stage and contained the lowest number of CD8+ and FOXP3+ immune cells. This study has revealed that immunohistochemistry and special staining of five stromal factors with hierarchical clustering analyses could be used for the prognostication of patients with CRC. Cancer stroma-targeting therapies may be candidate treatments for patients with CRC.
Collapse
Affiliation(s)
- Sunao Ito
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akira Koshino
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takahiro Otani
- Department of Public HealthNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shunsuke Kato
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Hiroki Takahashi
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Toyonori Tsuzuki
- Surgical PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Kenji Kasai
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Shuji Takiguchi
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
- Department of PathologyNagoya City University East Medical CenterNagoyaJapan
| |
Collapse
|
3
|
Komura M, Wang C, Ito S, Kato S, Ueki A, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Kasugai K, Takiguchi S, Takahashi S, Inaguma S. Simultaneous Expression of CD70 and POSTN in Cancer-Associated Fibroblasts Predicts Worse Survival of Colorectal Cancer Patients. Int J Mol Sci 2024; 25:2537. [PMID: 38473788 DOI: 10.3390/ijms25052537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide, with high morbidity and mortality rates. The evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) that modulate cancer cell proliferation, invasion, metastasis, and tumor immunity, including in CRC, has been attracting attention. The present study examined the expression status of CD70 and POSTN in CRC and analyzed their association with clinicopathological features and clinical outcomes. In the present study, in total 15% (40/269) and 44% (119/269) of cases exhibited CD70 and POSTN expression on CAFs, respectively. Co-expression of CD70 and POSTN was detected in 8% (21/269) of patients. Fluorescent immunohistochemistry identified the co-expression of CD70 and POSTN with FAP and PDPN, respectively. ACTA2 was not co-expressed with CD70 or POSTN in CRC CAFs. CRC with CD70+/POSTN+ status in CAFs was significantly associated with distant organ metastasis (p = 0.0020) or incomplete resection status (p = 0.0011). CD70+/POSTN+ status tended to associate with advanced pT stage (p = 0.032) or peritoneal metastasis (p = 0.0059). Multivariate Cox hazards regression analysis identified CD70+/POSTN+ status in CAFs [hazard ratio (HR) = 3.78] as a potential independent risk factor. In vitro experiments revealed the activated phenotypes of colonic fibroblasts induced by CD70 and POSTN, while migration and invasion assays identified enhanced migration and invasion of CRC cells co-cultured with CD70- and POSTN-expressing colonic fibroblasts. On the basis of our observations, CD70 and POSTN immunohistochemistry can be used in the prognostication of CRC patients. CRC CAFs may be a promising target in the treatment of CRC patients.
Collapse
Affiliation(s)
- Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Sunao Ito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shunsuke Kato
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Toyonori Tsuzuki
- Surgical Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
- Department of Pathology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
| |
Collapse
|
4
|
Ueki A, Komura M, Koshino A, Wang C, Nagao K, Homochi M, Tsukada Y, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Kasugai K, Takahashi S, Inaguma S. Stromal POSTN Enhances Motility of Both Cancer and Stromal Cells and Predicts Poor Survival in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15030606. [PMID: 36765564 PMCID: PMC9913098 DOI: 10.3390/cancers15030606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) has rapidly been accumulating. To uncover clinicopathological importance of periostin (POSTN) expression in colorectal cancer (CRC), the present study immunohistochemically examined its expression status. Furthermore, to reveal its mechanisms involved, molecular experiments were performed. In CRC tissues, 44% of the cases (119/269) exhibited POSTN expression in the CAFs. In contrast, CRC cells expressed POSTN at almost undetectable levels. Survival analyses identified that patients with POSTN-positive CRC had a significantly worse 5-year survival rate (63.2% vs. 81.2%; p = 0.011). Univariate analyses revealed that POSTN positivity was associated with peritoneal (p = 0.0031) and distant organ metastasis (p < 0.001). Furthermore, immunohistochemical analyses identified a significant association between POSTN and p53 complete loss status in CRC cells. Decorin and fibroblast activation protein expression in CAFs was also associated with POSTN. POSTN significantly enhanced the migration of both CRC cells and fibroblasts with FAK and AKT or STAT3 activation, and co-culture assays demonstrated the communication between CRC cells and fibroblasts, which enhanced STAT3 activation in fibroblasts. On the basis of our results, we speculated that stromal POSTN accelerated metastasis via stromal remodeling capacity and activated the migration of both tumor and stromal cells.
Collapse
Affiliation(s)
- Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Akira Koshino
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kazuhiro Nagao
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Mai Homochi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yuki Tsukada
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Toyonori Tsuzuki
- Surgical Pathology, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
- Department of Pathology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
- Correspondence:
| |
Collapse
|
5
|
Anatomical, histochemical, and immunohistochemical observations on the gastrointestinal tract of Gallinula chloropus (Aves: Rallidae). BMC ZOOL 2022; 7:61. [PMID: 37170387 PMCID: PMC10127349 DOI: 10.1186/s40850-022-00161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Gallinula chloropus (Linnaeus, 1758) is a wild aquatic omnivorous bird characterized by a marked resistance to harsh environmental conditions and a worldwide distribution. In this study, anatomical, morphometrical, histochemical, and immunohistochemical techniques were employed to study the structure of the gastrointestinal tract of Gallinula chloropus.
Results
The esophagus appeared tubular with no distinct crop. Both superficial (SPG) and deep (DPG) proventricular glands were present. The DPG filled about two-thirds of the total wall thickness. Histochemically, the mucosubstances revealed mixed alcian blue-PAS positive reactions. They were mainly localized in the acini of the esophageal glands and SPG, gastric surface epithelium, duct system of DPG, and intestinal goblet cells. The highest number of goblet cells per every 1 mm2 of the intestinal mucosa was seen within the ileum and rectum, 2555 ± 468 and 2607 ± 653 respectively. Notably, glucagon immunoreactive (IR) cells were abundant in the mucosa of the small and large intestines and the proventriculus, while somatostatin IR cells were concentrated within the acini of the DPG. IR cells for the mitosis marker phospho-histone H3 (PHH3) were highest within the entire intestinal crypts and mucosa-associated lymphoid tissues (MALT). In contrast, cells IR for the apoptosis marker C.CASP3 were remarkable in epithelial cells at the tips of intestinal villi and in MALT, reflecting the dynamic nature of the latter mentioned structures.
Conclusions
The findings of the present study advance our knowledge of the gross and microscopic anatomy of the gastrointestinal tract in wild birds and could help to enhance the productivity of Aves via improving gut health.
Collapse
|
6
|
Nagao K, Koshino A, Sugimura-Nagata A, Nagano A, Komura M, Ueki A, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Takahashi S, Kasugai K, Inaguma S. The Complete Loss of p53 Expression Uniquely Predicts Worse Prognosis in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063252. [PMID: 35328677 PMCID: PMC8948732 DOI: 10.3390/ijms23063252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
p53 immunohistochemistry is considered an accurate surrogate marker reflecting the underlying TP53 mutation status and has utility in tumor diagnostics. In the present study, 269 primary CRCs were immunohistochemically evaluated for p53 expression to assess its utility in diagnostic pathology and prognostication. p53 expression was wild-type in 59 cases (23%), overexpressed in 143 cases (55%), completely lost in 50 cases (19%), and cytoplasmic in 10 cases (4%). p53 immunoreactivity was associated with tumor size (p = 0.0056), mucus production (p = 0.0015), and mismatch repair (MMR) system status (p < 0.0001). Furthermore, among CRCs with wild-type p53 expression, a significantly higher number of cases had decreased CDX2 than those with p53 overexpression (p = 0.012) or complete p53 loss (p = 0.043). In contrast, among CRCs with p53 overexpression, there were significantly fewer ALCAM-positive cases than p53 wild-type cases (p = 0.0045). However, no significant association was detected between p53 immunoreactivity and the “stem-like” immunophenotype defined by CDX2 downregulation and ALCAM-positivity. Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio [HR] = 0.17, p < 0.0001), younger age (HR = 0.52, p = 0.021), and female sex (HR = 0.55, p = 0.046) as potential favorable factors. The analysis also revealed complete p53 loss (HR = 2.16, p = 0.0087), incomplete resection (HR = 2.65, p = 0.0068), and peritoneal metastasis (HR = 5.32, p < 0.0001) as potential independent risk factors for patients with CRC. The sub-cohort survival analyses classified according to chemotherapy after surgery revealed that CRC patients with wild-type p53 expression tended to have better survival than those with overexpression or complete loss after chemotherapy. Thus, immunohistochemistry for p53 could be used for the prognostication and chemotherapy target selection of patients with CRC.
Collapse
Affiliation(s)
- Kazuhiro Nagao
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Akira Koshino
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Akane Sugimura-Nagata
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Aya Nagano
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (K.N.); (A.K.); (A.S.-N.); (M.E.); (N.O.); (K.K.)
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (A.N.); (M.K.); (A.U.); (S.T.)
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
- Department of Pathology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
- Correspondence:
| |
Collapse
|
7
|
SPATA18 Expression Predicts Favorable Clinical Outcome in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23052753. [PMID: 35269894 PMCID: PMC8910917 DOI: 10.3390/ijms23052753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of mitochondrial quality control has been reported to be associated with cancer and degenerative diseases. SPATA18 (spermatogenesis-associated 18, also known as Mieap) encodes a p53-inducible protein that can induce lysosome-like organelles within mitochondria that eliminate oxidized mitochondrial proteins and has tumor suppressor functions in mitochondrial quality control. In the present study, 268 primary colorectal cancers (CRCs) were evaluated immunohistochemically for SPATA18 expression to assess its predictive utility and its association with cellular proliferation activity. Furthermore, the association with p53 immunoreactivity, a surrogate marker for TP53 mutation, was analyzed. Non-neoplastic colonic mucosa showed cytoplasmic SPATA18 expression. Seventy-two percent of the lesions (193/268) displayed high SPATA18 expression in the cytoplasm of CRC cells. Univariate analyses revealed significant associations between SPATA18 expression and tumor size (p < 0.0001), histological differentiation (p = 0.0017), and lymph node metastasis (p = 0.00039). The log-rank test revealed that patients with SPATA18-high CRCs had significantly better survival than SPATA18-low patients (p < 0.0001). Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio [HR] = 0.25), age < 70 years (HR = 0.50), and SPATA18-high (HR = 0.55) as potential favorable factors. Lymph node metastasis (HR = 1.98) and peritoneal metastasis (HR = 5.45) were cited as potential independent risk factors. Cellular proliferation activity was significantly higher in SPATA18-high tumors. However, no significant correlation was detected between SPATA18 expression and p53 immunoreactivity or KRAS/BRAF mutation status. On the basis of our observations, SPATA18 immunohistochemistry can be used in the prognostication of CRC patients.
Collapse
|
8
|
Koshino A, Nagano A, Ota A, Hyodo T, Ueki A, Komura M, Sugimura-Nagata A, Ebi M, Ogasawara N, Kasai K, Hosokawa Y, Kasugai K, Takahashi S, Inaguma S. PBK Enhances Cellular Proliferation With Histone H3 Phosphorylation and Suppresses Migration and Invasion With CDH1 Stabilization in Colorectal Cancer. Front Pharmacol 2022; 12:772926. [PMID: 35115926 PMCID: PMC8804381 DOI: 10.3389/fphar.2021.772926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignancies with high morbidity and mortality rates. Several biological markers for the prognostication of patient outcome of CRCs are available. Recently, our group identified two favorable factors for the survival of CRC patients: PDZ-binding kinase (PBK) and phospho-histone H3 (PHH3). Both showed a significant inverse association to pT stage. The aim of this study was to uncover the mechanism through which these cellular proliferation–associated protein expressions lead to favorable clinical outcome in CRC patients. We first confirmed co-expression of PBK and PHH3 in CRC cells. Further investigation showed that aberrantly expressed PBK up-regulated the cellular proliferation of CRC cells with accumulation of PHH3. The PBK inhibitor OTS514 suppressed cellular proliferation of CRC cells through down-regulation of PHH3 and induction of apoptosis. In vitro studies revealed that PBK suppressed the migration and invasion of CRC cells with suppression of Wnt/β-catenin signaling and CDH1 stabilization. Exogeneous PBK up-regulated the phosphorylated CDH1 at S840, S846, and S847 residues in cultured cells. Recombinant PBK directly phosphorylated HH3; however, it failed to phosphorylate CDH1 directly in vitro. The present study demonstrated the association of two markers PBK and PHH3 in CRC. We further identified one of the potential mechanisms by which higher expression of these cellular proliferation–associated proteins leads to the better survival of CRC patients, which likely involves PBK-mediated suppression of the migration and invasion of CRC cells. Our findings suggest that PBK-targeting therapeutics may be useful for the treatment of CRC patients with PBK-expressing tumors.
Collapse
Affiliation(s)
- Akira Koshino
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Aya Nagano
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akane Sugimura-Nagata
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Pathology, Nagoya City University East Medical Center, Nagoya, Japan
- *Correspondence: Shingo Inaguma,
| |
Collapse
|