1
|
Xin J, Zhao C, Li Y, Ji W, Tian R. Uncovering the crucial metabolic pathways in the invasive plant Hydrocotyle verticillata for defence against copper exposure by integrative transcriptome and metabolome analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109814. [PMID: 40147326 DOI: 10.1016/j.plaphy.2025.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
To throw light on the underlying strategies of Hydrocotyle verticillata coping with potentially toxic elements (PTEs) exposure. In this study, variations in the transcriptome and metabolomics of the leaves of plants exposed to various concentrations of copper ions (Cu2+) for 7 d were analyzed. Several crucial metabolic pathways involved in leaf defense against Cu2+ exposure were identified using integrative transcriptome and metabolome analysis. The pathways for plants coping with Cu2+ exposure were associated with carotenoid metabolism, amino acid metabolism, cutin, suberin, and wax biosynthesis, plant hormonal signal transduction, phenylpropanoid and terpenoid metabolisms. In the 90.0 μM Cu2+ treatment, abscisic acid 8'-hydroxylase was upregulated, reducing abscisic acid content, while downregulation of the BAK1 gene and pathogen-related protein genes triggered programmed cell death The positive role of antheraxanthin, γ-L-glutamylcysteine, γ-aminobutyric acid, and carnosine in the plant defense against 45.0 μM Cu2+ was observed. Lutein, 3,4-dihydrospheroidene, linoleic acid, glutamine, pyroglutamic acid, the gene encoding brassinosteroid resistant 1/2, and xyloglucan:xyloglucosyl transferase are involved in plant defense against 90.0 μM Cu2+. Compared to 0 mM, both Cu2+ treatments upregulated hexadecanedioic acid abundance and the gene encoding the auxin response protein. This study provides new insights into the underlying mechanisms through which invasive plants defend against PTE exposure.
Collapse
Affiliation(s)
- Jianpan Xin
- College of Architecuture Landscape, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Chu Zhao
- College of Architecuture Landscape, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yan Li
- College of Architecuture Landscape, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Wenke Ji
- College of Architecuture Landscape, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Runan Tian
- College of Architecuture Landscape, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
2
|
Xie Q, Deng W, Su Y, Ma L, Yang H, Yao F, Lin W. Transcriptome Analysis Reveals Novel Insights into the Hyperaccumulator Phytolacca acinosa Roxb. Responses to Cadmium Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:297. [PMID: 38256850 PMCID: PMC10819451 DOI: 10.3390/plants13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that causes serious damage to plant and human health. Phytolacca acinosa Roxb. has a large amount of aboveground biomass and a rapid growth rate, and it has been identified as a novel type of Cd hyperaccumulator that can be harnessed for phytoremediation. However, the molecular mechanisms underlying the response of P. acinosa to Cd2+ stress remain largely unclear. In this study, the phenotype, biochemical, and physiological traits of P. acinosa seeds and seedlings were analyzed under different concentrations of Cd2+ treatments. The results showed higher Cd2+ tolerance of P. acinosa compared to common plants. Meanwhile, the Cd2+ content in shoots reached 449 mg/kg under 10 mg/L Cd2+ treatment, which was obviously higher than the threshold for Cd hyperaccumulators. To investigate the molecular mechanism underlying the adaptability of P. acinosa to Cd stress, RNA-Seq was used to examine transcriptional responses of P. acinosa to Cd stress. Transcriptome analysis found that 61 genes encoding TFs, 48 cell wall-related genes, 35 secondary metabolism-related genes, 133 membrane proteins and ion transporters, and 96 defense system-related genes were differentially expressed under Cd2+ stress, indicating that a series of genes were involved in Cd2+ stress, forming a complex signaling regulatory mechanism. These results provide new scientific evidence for elucidating the regulatory mechanisms of P. acinosa response to Cd2+ stress and new clues for the molecular breeding of heavy metal phytoremediation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmacy, Xiangnan University, Chenzhou 423099, China; (Q.X.)
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Wentao Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Liying Ma
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Haijun Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Feihong Yao
- College of Pharmacy, Xiangnan University, Chenzhou 423099, China; (Q.X.)
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Wang L, Jian Z, Wang P, Zhao L, Chen K. Combined physiological responses and differential expression of drought-responsive genes preliminarily explain the drought resistance mechanism of Lotus corniculatus. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:46-57. [PMID: 36031596 DOI: 10.1071/fp22051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Lotus corniculatus L. is a perennial high-quality legume forage species but is vulnerable to drought, and water deficit reduces productivity. To understand the drought response mechanism of L. corniculatus , we investigated physiological responses under drought stress and constructed suppression subtractive hybridisation (SSH) cDNA libraries to isolate drought-inducible genes and quantitatively study the expression levels of candidate drought- responsive genes. Genes encoding calmodulin-like protein, mitogen-activated protein kinase, indole-3-acetic acid-induced protein, ser/thr-protein phosphatase homolog-related proteins, and β -galactosidase-related protein with hydrolysis activity were isolated and considered the main factors that explained the resistance of L. corniculatus to drought. Approximately 632 expressed sequence tags (ESTs) were identified and confirmed in the constructed SSH library. The Gene Ontology (GO) analysis revealed that these genes were involved mainly in transcription processes, protein synthesis, material metabolism, catalytic reactions, sugar metabolism, and photosynthesis. The interaction between the functions of these drought-related genes and the physiological responses preliminarily explains the drought resistance mechanisms of L. corniculatus .
Collapse
Affiliation(s)
- Leiting Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhongling Jian
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Puchang Wang
- Guizhou Institute of Prataculture, Guiyang 550006, China
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; and State Engineering Technology Institute for Karst Rocky Desertification Control, Guiyang 550025, China
| | - Keke Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Xu Z, Li K, Li W, Wu C, Chen X, Huang J, Zhang X, Ban Y. The positive effects of arbuscular mycorrhizal fungi inoculation and/or additional aeration on the purification efficiency of combined heavy metals in vertical flow constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68950-68964. [PMID: 35554837 DOI: 10.1007/s11356-022-20759-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Inoculation with arbuscular mycorrhizal fungi (AMF) and additional aeration (AA), as two approaches to improve the functioning of treatment wetlands, can further promote the capacity of wetlands to purify pollutants. The extent to which, and mechanisms by which, AMF and AA purify wetlands polluted by combined heavy metals (HMs) are not well understood. In this study, the effects and mechanisms of AMF and/or AA on combined HMs removal in vertical flow constructed wetlands (VFCWs) with the Phragmites australis (reeds) were investigated at different HMs concentrations. The results showed that (1) AA improved the AMF colonization in VFCWs and AMF accumulated the combined HMs in their structures; (2) AMF inoculation and/or AA significantly promoted the reeds growth and antioxidant enzymes activities, thereby alleviating oxidative stress; (3) AMF inoculation and AA significantly enhanced the removal rates of Pb, Zn, Cu, and Cd under the stress of high combined HMs concentrations comparing to the control check (CK) treatment (autoclaved AMF inoculation and no aeration), which increased by 22.72%, 30.31%, 12.64%, and 50.22%, respectively; (4) AMF inoculation and/or AA significantly promoted the combined HMs accumulation in plant roots and substrates and altered the distribution of HMs at the subcellular level. We therefore conclude that AMF inoculation and/or AA in VFCWs improves the purification of combined HM-polluted water, and the VFCWs-reeds-AMF/AA associations exhibit great potential for application in remediation of combined HM-polluted wastewater.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Wenxuan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Chen Wu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
5
|
Zhao L, Zhu Y, Wang M, Han Y, Xu J, Feng W, Zheng X. Enolase, a cadmium resistance related protein from hyperaccumulator plant Phytolacca americana, increase the tolerance of Escherichia coli to cadmium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:562-571. [PMID: 35802034 DOI: 10.1080/15226514.2022.2092064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phytolacca americana is a Cd hyperaccumulator plant that accumulates significant amounts of Cd in leaves, making it a valuable phytoremediation plant species. Our previous research found enolase (ENO) may play an important part in P. americana to cope with Cd stress. As a multifunctional enzyme, ENO was involved not only in glycolysis but also in the response of plants to various environmental stresses. However, there are few studies on the function of PaENO (P. americana enolase) in coping with Cd stress. In this study, the PaENO gene was isolated from P. americana, and the expression level of PaENO gene significantly increased after Cd treatment. The enzymatic activity analysis showed PaENO had typical ENO activity, and the 42-position serine was essential to the enzymatic activity of PaENO. The Cd resistance assay indicated the expression of PaENO remarkably enhanced the resistance of E. coli to Cd, which was achieved by reducing the Cd content in E. coli. Moreover, both the expression of inactive PaENO and PaMBP-1 (alternative translation product of PaENO) can improve the tolerance of E. coli to Cd. The results indicated PaENO may be alternatively translated into the transcription factor PaMBP-1 to participate in the response of P. americana to Cd stress.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Min Wang
- Beijing Key Laboratory of Plant Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
6
|
Biogenic Silver Nanoparticles as a Stress Alleviator in Plants: A Mechanistic Overview. Molecules 2022; 27:molecules27113378. [PMID: 35684312 PMCID: PMC9182038 DOI: 10.3390/molecules27113378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, the growth and yield of crops are restrained due to an increase in the occurrence of ecological stresses globally. Biogenic generation of nanomaterials is an important step in the development of environmentally friendly procedures in the nanotechnology field. Silver-based nanomaterials are significant because of their physical, chemical, and biological features along with their plentiful applications. In addition to useful microbes, the green synthesized Ag nanomaterials are considered to be an ecologically friendly and environmentally biocompatible method for the enhancement of crop yield by easing stresses. In the recent decade, due to regular droughts, infrequent precipitation, salinity, and increased temperature, the climate alternation has changed certain ecological systems. As a result of these environmental changes, crop yield has decreased worldwide. The role of biogenic Ag nanomaterials in enhancing methylglyoxal detoxification, antioxidant defense mechanisms, and generating tolerance to stresses-induced ROS injury has been methodically explained in plants over the past ten years. However, certain studies regarding stress tolerance and metal-based nanomaterials have been directed, but the particulars of silver nanomaterials arbitrated stresses tolerance have not been well-reviewed. Henceforth, there is a need to have a good understanding of plant responses during stressful conditions and to practice the combined literature to enhance tolerance for crops by utilization of Ag nanoparticles. This review article illustrates the mechanistic approach that biogenic Ag nanomaterials in plants adopt to alleviate stresses. Moreover, we have appraised the most significant activities by exogenous use of Ag nanomaterials for improving plant tolerance to salt, low and high temperature, and drought stresses.
Collapse
|
7
|
Wu P, Cui P, Zhang Y, Alves ME, Liu C, Zhou D, Wang Y. Unraveling the molecular mechanisms of Cd sorption onto MnO x-loaded biochar produced from the Mn-hyperaccumulator Phytolacca americana. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127157. [PMID: 34530270 DOI: 10.1016/j.jhazmat.2021.127157] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Engineered biochar represents a promising material for green remediation practices. In this paper, we present an innovative approach to produce MnOx-loaded biochars by pyrolyzing the biomass of a Mn-hyperaccumulator species (Phytolacca americana). Batch sorption and stirred-flow kinetic experiments were combined with spectroscopic techniques to elucidate the mechanisms behind the Cd sorption onto those biochars, named here as PABCs. The incorporation of MnOx into the PABCs increased their surface densities of oxygen-containing functional groups. The average Mn leaching (< 9%) from PABCs was lower than that measured for the non-pyrolyzed biomass of P. americana (30-43%). PABCs pyrolyzed at 500 °C had Cd sorption capacities as high as 212-337 mg/g, which achieved by far the best performance reported for biochar materials. The stirred-flow experiments showed that MnOx loading was instrumental in increasing both the Cd sorption onto PABCs as well as its irreversibility. Extended X-ray absorption fine structure spectroscopy revealed that the Cd immobilization occurred mainly through its association with organic matter (Cd-OM) and, to a lesser extent, with carbonate (CdCO3) and MnOx (Cd-MnOx). In short, MnOx-loaded biochar prepared from the biomass of a Mn-hyperaccumulator species proved to be an effective, sustainable, and eco-friendly material for remediating Cd-contaminated waters.
Collapse
Affiliation(s)
- Ping Wu
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Marcelo Eduardo Alves
- Departamento de Ciências Exatas, Escola Superior de Agricultura "Luiz de Queiroz", 13418-900 Piracicaba, SP, Brazil
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Comparative transcriptome analysis of the hyperaccumulator plant Phytolacca americana in response to cadmium stress. 3 Biotech 2021; 11:327. [PMID: 34194911 DOI: 10.1007/s13205-021-02865-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
To study the molecular mechanism of the hyperaccumulator plant Phytolacca americana against cadmium (Cd) stress, the leaves of P. americana treated with 400 μM Cd for 0, 2, 12, and 24 h were harvested for comparative transcriptome analysis. In total, 110.07 Gb of clean data were obtained, and 63,957 unigenes were acquired after being assembled. Due to the lack of P. americana genome information, only 24,517 unigenes were annotated by public databases. After Cd treatment, 5054 differentially expressed genes (DEGs) were identified. KEGG pathway enrichment analysis of DEGs showed that genes involved in the flavonoid biosynthesis and antenna proteins of photosynthesis were significantly down-regulated, while genes related to the lignin biosynthesis pathway were remarkably up-regulated, indicating that P. americana could synthesize more lignin to cope with Cd stress. Moreover, genes related to heavy metal accumulation, sulfur metabolism and glutathione metabolism were also significantly up-regulated. The gene expression pattern of several key genes related to distinct metabolic pathways was verified by qRT-PCR. The results indicated that the immobilization of lignin in cell wall, chelation, vacuolar compartmentalization, as well as the increase of thiol compounds content may be the important mechanisms of Cd detoxification in hyperaccumulator plant P. americana. Accession numbers: the raw data of P. americana transcriptome presented in this study are openly available in NCBI SRA database, under the BioProject of PRJNA649785. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02865-x.
Collapse
|
9
|
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123919. [PMID: 33254825 DOI: 10.1016/j.jhazmat.2020.123919] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
The heavy metal pollution is a worldwide problem and has received a serious concern for the ecosystem and human health. In the last decade, remediation of the agricultural polluted soil has attracted great attention. Phytoremediation is one of the technologies that effectively alleviate heavy metal toxicity, however, this technique is limited to many factors contributing to low plant growth rate and nature of metal toxicities. Arbuscular mycorrhizal fungi (AMF) assisted alleviation of heavy metal phytotoxicity is a cost-effective and environment-friendly strategy. AMF have a symbiotic relationship with the host plant. The bidirectional exchange of resources is a hallmark and also a functional necessity in mycorrhizal symbiosis. During the last few years, a significant progress in both physiological and molecular mechanisms regarding roles of AMF in the alleviation of heavy metals (HMs) toxicities in plants, acquisition of nutrients, and improving plant performance under toxic conditions of HMs has been well studied. This review summarized the current knowledge regarding AMF assisted remediation of heavy metals and some of the strategies used by mycorrhizal fungi to cope with stressful environments. Moreover, this review provides the information of both molecular and physiological responses of mycorrhizal plants as well as AMF to heavy metal stress which could be helpful for exploring new insight into the mechanisms of HMs remediation by utilizing AMF.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yizeng Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qianqian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Huayuan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Guoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lulu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Youjuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia, CY-1678, Cyprus
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|