1
|
Morera B, Garrote PJ, Wiegand T, Ayllón D, Fedriani JM. Invariant Spatial Pattern Across Mediterranean Scrublands in the Iberian Pear ( Pyrus bourgaeana). Ecol Evol 2025; 15:e70757. [PMID: 39839340 PMCID: PMC11748438 DOI: 10.1002/ece3.70757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
The spatial distribution pattern of plant species is frequently driven by a combination of biotic and abiotic factors that jointly influence the arrival, establishment, and reproduction of plants. Comparing the spatial distribution of a target plant species in different populations represents a robust approach to identify the underlying mechanisms. We mapped all reproductive individuals of the Iberian pear (Pyrus bourgaeana) in five plots (1.39-8.57 km2) differing in the activity of seed dispersers and vertebrate herbivores in southern Iberian Peninsula. We used Thomas point process models to quantify the consistency in the spatial pattern and the level of spatial aggregation of this mammal-dispersed tree among the five populations. We tested two hypotheses: (i) because the clumped defecation behavior of some dispersers can lead to local tree aggregation, and because denser groups of fruiting trees can limit seed dispersal by attracting frugivores to specific sites, we expected a consistent small-scale aggregation pattern across all populations; and (ii) because ungulates reduce recruitment by preying on seeds and seedlings, we hypothesize that ungulate activity will show negative relationships with tree density and level of aggregation. Our spatial analysis revealed consistent and highly aggregated small-scale patterns of all Iberian pear populations, with one critical scale aggregation, a low density of clusters and high variability in the number of trees per cluster. Ungulate activity and the number of trees per cluster showed a marginally significant negative correlation, suggesting that in areas with higher ungulate activity, trees tend to form less dense clusters. Although several of the underlying processes varied greatly among the five study sites, the Iberian pear showed a relatively consistent spatial pattern with just quantitative nuances throughout the entire region. This result has significant implications for the reproductive success of the species, management strategies, and ultimately the long-term persistence of populations.
Collapse
Affiliation(s)
- Brayan Morera
- Centro de Investigaciones sobre Desertificación CIDECSIC‐UVEG‐GVValenciaSpain
| | | | - Thorsten Wiegand
- Department of Ecological ModellingHelmholtz Centre for Environmental Research‐UFZLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Daniel Ayllón
- Department of Biodiversity, Ecology and EvolutionComplutense University of Madrid (UCM)MadridSpain
| | - Jose M. Fedriani
- Centro de Investigaciones sobre Desertificación CIDECSIC‐UVEG‐GVValenciaSpain
- Estación Biológica de Doñana (EBD–CSIC)SevilleSpain
| |
Collapse
|
2
|
Suissa JS, Agbleke AA, Friedman WE. A bump in the node: The hydraulic implications of rhizomatous growth. AMERICAN JOURNAL OF BOTANY 2023; 110:e16105. [PMID: 36401563 DOI: 10.1002/ajb2.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Rhizomatous growth characterizes numerous taxa among vascular plants. While abundant information exists on nutrient sharing and demography, the question of how these metameric organisms move water through their bodies remains largely unstudied. Moreover, we lack an understanding of the evolutionary implications of rhizomatous growth across vascular plants. Here, we examined these questions by investigating how rhizomatous growth and vascular construction affect whole-plant hydraulic function. METHODS In five terrestrial fern species with diverse vascular construction, we used microcomputed tomography and bright-field microscopy to examine vascular construction across nodes along the rhizome. These data were integrated with measurements of leaf stomatal conductance under rooted and uprooted conditions to relate vascular patterning and hydraulic architecture to leaf water status. RESULTS Similar to phytomers of woody seed plants, nodal regions in rhizomatous ferns are areas of hydraulic resistance. While water is shared along the rhizomes of these investigated species, hydraulic conductivity drops at nodes and stomatal conductance declines when nodes were locally uprooted. Together, our data suggest that nodes are chokepoints in axial water movement along the rhizome. CONCLUSIONS Nodal chokepoints decrease hydraulic integration between phytomers. At the same time, chokepoints may act as "safety valves", hydraulically localizing each phytomer-potentially decreasing embolism and pathogen spread. This suggests a potential trade-off in the principal construction of the fern rhizome. Moreover, we propose that shoot-borne roots (homorhizy) and the prostrate habit of rhizomatous ferns decrease the hydraulic and structural burdens that upright plants typically incur. The absence of these hydraulic and structural demands may be one reason ferns (and many rhizomatous plants) lack, or have minimally developed, secondary xylem.
Collapse
Affiliation(s)
- Jacob S Suissa
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- The Arnold Arboretum of Harvard University, Boston, MA, USA
| | | | - William E Friedman
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- The Arnold Arboretum of Harvard University, Boston, MA, USA
| |
Collapse
|
3
|
Spatial isolation impacts pollinator visitation and reproductive success of a threatened self-incompatible Mediterranean tree. ACTA OECOLOGICA 2022. [DOI: 10.1016/j.actao.2022.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Hoppe J, Zhang X, Thomas FM. Belowground inter-ramet water transport capacity in Populus euphratica, a Central Asian desert phreatophyte. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:38-46. [PMID: 31507060 DOI: 10.1111/plb.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Populus euphratica Oliv. is a widespread phreatophytic tree species that forms riparian forests in (hyper-)arid regions of Central Asia. Its recruitment strongly relies on vegetative propagation from 'root suckers' that emerge from underground root spacers. The water transport through the spacers, although decisive for emerging ramets, has only rarely been quantified, but is crucial for the vegetative regeneration of the forests. In root spacers with different diameters collected from a mature poplar forest in northwest China, we calculated the hydraulic conductivity (kc ) from anatomical investigations on the basis of a modified Hagen-Poiseuille equation and measured it (km ) with a perfusion solution in the laboratory. The km values were compared with the water use by young and mature P. euphratica trees determined in previous studies. We obtained a significant correlation between km and kc (which, however, was higher by at least one order of magnitude). Due to the extensive occurrence of tyloses, particularly in older conduits and thicker spacers, and because the conduit area did not increase with spacer diameter, neither kc nor km increased with an increase in spacer diameter. The water supply through the spacers would be sufficient to meet the water demand even of mature trees. Our results provide a mechanistic explanation for the observed occurrence of P. euphratica clones across large areas and, provided that they are also valid for stands with larger distances to the water table, for the sustained growth and vegetative reproduction of P. euphratica stands growing at larger distances from the groundwater.
Collapse
Affiliation(s)
- J Hoppe
- Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany
| | - X Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - F M Thomas
- Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany
| |
Collapse
|
5
|
Castilla AR, Garrote PJ, Żywiec M, Calvo G, Suárez-Esteban A, Delibes M, Godoy JA, Picó FX, Fedriani JM. Genetic rescue by distant trees mitigates qualitative pollen limitation imposed by fine-scale spatial genetic structure. Mol Ecol 2019; 28:4363-4374. [PMID: 31495974 DOI: 10.1111/mec.15233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/26/2022]
Abstract
Restricted seed dispersal frequently leads to fine-scale spatial genetic structure (i.e., FSGS) within plant populations. Depending on its spatial extent and the mobility of pollinators, this inflated kinship at the immediate neighbourhood can critically impoverish pollen quality. Despite the common occurrence of positive FSGS within plant populations, our knowledge regarding the role of long-distance pollination preventing reproductive failure is still limited. Using microsatellite markers, we examined the existence of positive FSGS in two low-density populations of the tree Pyrus bourgaeana. We also designed controlled crosses among trees differing in their kinship to investigate the effects of increased local kinship on plant reproduction. We used six pollination treatments and fully monitored fruit production, fruit and seed weight, proportion of mature seeds per fruit, and seed germination. Our results revealed positive FSGS in both study populations and lower fruit initiation in flowers pollinated with pollen from highly-genetically related individuals within the neighbourhood, with this trend intensifying as the fruit development progressed. Besides, open-pollinated flowers exhibited lower performance compared to those pollinated by distant pollen donors, suggesting intense qualitative pollen limitation in natural populations. We found positive fine-scale spatial genetic structure is translated into impoverished pollen quality from nearby pollen donors which negatively impacts the reproductive success of trees in low-density populations. Under this scenario of intrapopulation genetic rescue by distant pollen donors, the relevance of highly-mobile pollinators for connecting spatially and genetically distant patches of trees may be crucial to safeguarding population recruitment.
Collapse
Affiliation(s)
- Antonio R Castilla
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Pedro J Garrote
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Magdalena Żywiec
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Gemma Calvo
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Alberto Suárez-Esteban
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Miguel Delibes
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - José A Godoy
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Jose M Fedriani
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.,Centro de Investigaciones sobre Desertificación CIDE, CSIC-UVEG-GV, Moncada, Spain
| |
Collapse
|