1
|
Paillassa J, Pepin S, Ethier G, Lamarque LJ, Maire V. Carboxylation capacity is the main limitation of carbon assimilation in High Arctic shrubs. PLANT, CELL & ENVIRONMENT 2024; 47:5315-5329. [PMID: 39189974 DOI: 10.1111/pce.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Increases in shrub height, biomass and canopy cover are key whole-plant features of warming-induced vegetation change in tundra. We investigated leaf functional traits underlying photosynthetic capacity of Arctic shrub species, particularly its main limiting processes such as mesophyll conductance. In this nutrient-limited ecosystem, we expect leaf nitrogen concentration to be the main limiting factor for photosynthesis. We measured the net photosynthetic rate at saturated light (Asat) in three Salix species throughout a glacial valley in High-Arctic tundra and used a causal approach to test relationships between leaf stomatal and mesophyll conductances (gsc, gm), carboxylation capacity (Vcmax), nitrogen and phosphorus concentration (Narea, Parea) and leaf mass ratio (LMA). Arctic Salix species showed no difference in Asat compared to a global data set, while being characterized by higher Narea, Parea and LMA. Vcmax, gsc and gm independently increased Asat, with Vcmax as its main limitation. We highlighted a nitrogen-influenced pathway for increasing photosynthesis in the two prostrate mesic habitat species. In contrast, the erect wetland habitat Salix richardsonii mainly increased Asat with increasing gsc. Overall, our study revealed high photosynthetic capacities of Arctic Salix species but contrasting regulatory pathways that may influence shrub ability to respond to environmental changes in High Arctic tundra.
Collapse
Affiliation(s)
- Jennifer Paillassa
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
- Département des sols et de génie agroalimentaire, Université Laval, Québec, Quebec, Canada
| | - Steeve Pepin
- Département des sols et de génie agroalimentaire, Université Laval, Québec, Quebec, Canada
| | - Gilbert Ethier
- Département de phytologie, Université Laval, Québec, Quebec, Canada
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Yin Z, Zhou F, Chen Y, Wu H, Yin T. Genome-Wide Analysis of the Expansin Gene Family in Populus and Characterization of Expression Changes in Response to Phytohormone (Abscisic Acid) and Abiotic (Low-Temperature) Stresses. Int J Mol Sci 2023; 24:ijms24097759. [PMID: 37175464 PMCID: PMC10178758 DOI: 10.3390/ijms24097759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Expansins are a group of cell wall enzyme proteins that help to loosen cell walls by breaking hydrogen bonds between cellulose microfibrils and hemicellulose. Expansins are essential plant proteins that are involved in several key processes, including seed germination, the growth of pollen tubes and root hairs, fruit ripening and abscission processes. Currently, there is a lack of knowledge concerning the role of expansins in woody plants. In this study, we analyzed expansin genes using Populus genome as the study target. Thirty-six members of the expansin gene family were identified in Populus that were divided into four subfamilies (EXPA, EXPB, EXLA and EXLB). We analyzed the molecular structure, chromosome localization, evolutionary relationships and tissue specificity of these genes and investigated expression changes in responses to phytohormone and abiotic stresses of the expansin genes of Populus tremula L. (PtEXs). Molecular structure analysis revealed that each PtEX protein had several conserved motifs and all of the PtEXs genes had multiple exons. Chromosome structure analysis showed that the expansin gene family is distributed on 14 chromosomes. The PtEXs gene family expansion patterns showed segmental duplication. Transcriptome data of Populus revealed that 36 PtEXs genes were differently expressed in different tissues. Cis-element analysis showed that the PtEXs were closely associated with plant development and responses to phytohormone and abiotic stress. Quantitative real-time PCR showed that abscisic acid (ABA) and low-temperature treatment affected the expression of some PtEXs genes, suggesting that these genes are involved in responses to phytohormone and abiotic stress. This study provides a further understanding of the expansin gene family in Populus and forms a basis for future functional research studies.
Collapse
Affiliation(s)
- Zhihui Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangwei Zhou
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Key Laboratory for Tree Breeding and Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|