1
|
Mou W, Khare R, Polko JK, Taylor I, Xu J, Xue D, Benfey P, Van de Poel B, Chang C, Kieber JJ. Ethylene-independent modulation of root development by ACC via downregulation of WOX5 and group I CLE peptide expression. Proc Natl Acad Sci U S A 2025; 122:e2417735122. [PMID: 39908106 PMCID: PMC11831204 DOI: 10.1073/pnas.2417735122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
In seed plants, the canonical role of 1-aminocyclopropane-1-carboxylic acid (ACC) is to serve as the precursor in the biosynthesis of the phytohormone ethylene, and indeed, ACC treatment is often used as a proxy for ethylene treatment. Increasing evidence suggests that ACC can also act independently of ethylene to regulate various aspects of plant growth and development. Here, we explore the effects of ACC on Arabidopsis thaliana root growth and the mechanisms by which it acts. ACC inhibits growth of the primary root in Arabidopsis seedlings when ethylene signaling is blocked, which becomes evident after 36 h of treatment with ACC. This reduced root growth is in part the result of suppressed cell proliferation in the root meristem resulting from altered expression of a key regulator of stem cell niche activity, WOX5. ACC also promotes lateral root (LR) development, in contrast to ethylene, which inhibits LR formation. Transcriptomic analysis of roots revealed no significant changes in gene expression after 45 min or 4 h of ACC treatment, but longer treatment times revealed a large number of differentially expressed genes, including the downregulation of the expression of a small group of phylogenetically related CLE peptides. Reduced expression of these group 1 CLEs in response to ACC leads to the activation of a transcription factor, LBD18, which promotes LR development. These results suggest that ACC acts to modulate multiple aspects of Arabidopsis root growth independently of ethylene via distinct transcriptional effects in the root meristem and LR precursor cells.
Collapse
Affiliation(s)
- Wangshu Mou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
- Department of Biosystems, University of Leuven, Leuven3001, Belgium
- Leuven Plant Institute, University of Leuven, Leuven3001, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD20742
| | - Ria Khare
- Department of Biology, University of North Carolina, Chapel Hill, NC27599
| | - Joanna K. Polko
- Department of Biology, University of North Carolina, Chapel Hill, NC27599
| | - Isaiah Taylor
- Department of Biology, Duke University, Durham, NC27708
| | - Juan Xu
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Philip Benfey
- Department of Biology, Duke University, Durham, NC27708
| | - Bram Van de Poel
- Department of Biosystems, University of Leuven, Leuven3001, Belgium
- Leuven Plant Institute, University of Leuven, Leuven3001, Belgium
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD20742
| | - Joseph J. Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC27599
| |
Collapse
|
2
|
Shammi T, Lee Y, Trivedi J, Sierras D, Mansoor A, Maxwell JM, Williamson M, McMillan M, Chakravarty I, Uhde-Stone C. Transcriptomics Provide Insights into Early Responses to Sucrose Signaling in Lupinus albus, a Model Plant for Adaptations to Phosphorus and Iron Deficiency. Int J Mol Sci 2024; 25:7692. [PMID: 39062943 PMCID: PMC11277447 DOI: 10.3390/ijms25147692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphorus (P) and iron (Fe) deficiency are major limiting factors for plant productivity worldwide. White lupin (Lupinus albus L.) has become a model plant for understanding plant adaptations to P and Fe deficiency, because of its ability to form cluster roots, bottle-brush-like root structures play an important role in the uptake of P and Fe from soil. However, little is known about the signaling pathways involved in sensing and responding to P and Fe deficiency. Sucrose, sent in increased concentrations from the shoot to the root, has been identified as a long-distance signal of both P and Fe deficiency. To unravel the responses to sucrose as a signal, we performed Oxford Nanopore cDNA sequencing of white lupin roots treated with sucrose for 10, 15, or 20 min compared to untreated controls. We identified a set of 17 genes, including 2 bHLH transcription factors, that were up-regulated at all three time points of sucrose treatment. GO (gene ontology) analysis revealed enrichment of auxin and gibberellin responses as early as 10 min after sucrose addition, as well as the emerging of ethylene responses at 20 min of sucrose treatment, indicating a sequential involvement of these hormones in plant responses to sucrose.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (T.S.)
| |
Collapse
|
3
|
Ren G, Zhang Y, Chen Z, Xue X, Fan H. Research Progress of Small Plant Peptides on the Regulation of Plant Growth, Development, and Abiotic Stress. Int J Mol Sci 2024; 25:4114. [PMID: 38612923 PMCID: PMC11012589 DOI: 10.3390/ijms25074114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.
Collapse
Affiliation(s)
- Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| |
Collapse
|
4
|
Kang J, Wang X, Ishida T, Grienenberger E, Zheng Q, Wang J, Zhang Y, Chen W, Chen M, Song XF, Wu C, Hu Z, Jia L, Li C, Liu CM, Fletcher JC, Sawa S, Wang G. A group of CLE peptides regulates de novo shoot regeneration in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 235:2300-2312. [PMID: 35642449 DOI: 10.1111/nph.18291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Known for their regulatory roles in stem cell homeostasis, CLAVATA3/ESR-RELATED (CLE) peptides also function as mediators of external stimuli such as hormones. De novo shoot regeneration, representing the remarkable plant cellular plasticity, involves reconstitution of stem cells under control of stem-cell regulators. Yet whether and how stem cell-regulating CLE peptides are implicated in plant regeneration remains unknown. By CRISPR/Cas9-induced loss-of-function studies, peptide application, precursor overexpression, and expression analyses, the role of CLE1-CLE7 peptides and their receptors in de novo shoot regeneration was studied in Arabidopsis thaliana. CLE1-CLE7 are induced by callus-induction medium and dynamically expressed in pluripotent callus. Exogenously-applied CLE1-CLE7 peptides or precursor overexpression effectively leads to shoot regeneration suppression, whereas their simultaneous mutation results in enhanced regenerative capacity, demonstrating that CLE1-CLE7 peptides redundantly function as negative regulators of de novo shoot regeneration. CLE1-CLE7-mediated shoot regeneration suppression is impaired in loss-of-function mutants of callus-expressed CLAVATA1 (CLV1) and BARELY ANY MERISTEM1 (BAM1) genes, indicating that CLV1/BAM1 are required for CLE1-CLE7-mediated shoot regeneration signaling. CLE1-CLE7 signaling resulted in transcriptional repression of WUSCHEL (WUS), a stem cell-promoting transcription factor known as a principal regulator of plant regeneration. Our results indicate that functionally-redundant CLE1-CLE7 peptides genetically act through CLV1/BAM1 receptors and repress WUS expression to modulate shoot-regeneration capacity, establishing the mechanistic basis for CLE1-CLE7-mediated shoot regeneration and a novel role for CLE peptides in hormone-dependent developmental plasticity.
Collapse
Affiliation(s)
- Jingke Kang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xuening Wang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Etienne Grienenberger
- Plant Gene Expression Center, USDA-ARS/UC Berkeley, Albany, CA, 94710, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Qian Zheng
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Wang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Wenqiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyun Wu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhubing Hu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lingyu Jia
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Chen Li
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jennifer C Fletcher
- Plant Gene Expression Center, USDA-ARS/UC Berkeley, Albany, CA, 94710, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Shinichiro Sawa
- International Research Center for Agricultural and Environmental Biology (IRCAEB), 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Guodong Wang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
5
|
Partap M, Warghat AR, Kumar S. Cambial meristematic cell culture: a sustainable technology toward in vitro specialized metabolites production. Crit Rev Biotechnol 2022:1-19. [PMID: 35658789 DOI: 10.1080/07388551.2022.2055995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cambial meristematic cells (CMCs) culture has received a fair share of scientific and industrial attention among the trending topics of plant cell culture, especially their potential toward secondary metabolites production. However, the conventional plant cell culture is often not commercially feasible because of difficulties associated with culture dedifferentiated cells. Several reports have been published to culture CMCs and bypass the dedifferentiation process in plant cell culture. Numerous mitochondria, multiple vacuoles, genetic stability, self-renewal, higher biomass, and stable metabolites accumulation are the characteristics features of CMCs compared with dedifferentiated cells (DDCs) culture. The CMCs culture has a broader application to produce large-scale natural compounds for: pharmaceuticals, food, and cosmetic industries. Cutting-edge progress in plant cellular and molecular biology has allowed unprecedented insights into cambial stem cell culture and its fundamental processes. Therefore, regarding sustainability and natural compound production, cambial cell culture ranks among the most vital biotechnological interventions for industrial and economic perspectives. This review highlights the recent advances in plant stem cell culture and understands the cambial cells induction and culture mechanisms that affect the growth and natural compounds production.
Collapse
Affiliation(s)
- Mahinder Partap
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Ma D, Endo S, Betsuyaku E, Fujiwara T, Betsuyaku S, Fukuda H. Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots. PLANT MOLECULAR BIOLOGY 2022; 108:225-239. [PMID: 35038066 DOI: 10.1007/s11103-021-01234-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
This study focused on the role of CLE1-7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes (CLE1-7) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 (NPR1)-dependent SA signaling and flg22-FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a β-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2- and CLE3-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.
Collapse
Affiliation(s)
- Dichao Ma
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Satoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute of Interdisciplinary Research, Kyoto University of Advanced Science, 1-1 Nanjo-Ohtani, Sogabe-cho, Kameoka-city, Kyoto, 621-8555, Japan
| | - Eriko Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan.
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, 1-1 Nanjo-Ohtani, Sogabe-cho, Kameoka-city, Kyoto, 621-8555, Japan.
| |
Collapse
|
7
|
Yuan B, Wang H. Peptide Signaling Pathways Regulate Plant Vascular Development. FRONTIERS IN PLANT SCIENCE 2021; 12:719606. [PMID: 34539713 PMCID: PMC8446620 DOI: 10.3389/fpls.2021.719606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Plant small peptides, including CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) and Epidermal Patterning Factor-Like (EPFL) peptides, play pivotal roles in coordinating developmental processes through cell-cell communication. Recent studies have revealed that the phloem-derived CLE peptides, CLE41/44 and CLE42, promote (pro-)cambial cell proliferation and inhibit xylem cell differentiation. The endodermis-derived EPFL peptides, EPFL4 and EPFL6, modulate vascular development in the stem. Further, several other peptide ligands CLE9, CLE10, and CLE45 play crucial roles in regulating vascular development in the root. The peptide signaling pathways interact with each other and crosstalk with plant hormone signals. In this mini-review, we summtarize the recent advances on peptides function in vascular development and discuss future perspectives for the research of the CLE and EPFL peptides.
Collapse
Affiliation(s)
- Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
- Institute for System Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Wan K, Lu K, Gao M, Zhao T, He Y, Yang DL, Tao X, Xiong G, Guan X. Functional analysis of the cotton CLE polypeptide signaling gene family in plant growth and development. Sci Rep 2021; 11:5060. [PMID: 33658526 PMCID: PMC7930028 DOI: 10.1038/s41598-021-84312-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)–RELATED (CLE) gene family encodes a large number of polypeptide signaling molecules involved in the regulation of shoot apical meristem division and root and vascular bundle development in a variety of plants. CLE family genes encode important short peptide hormones; however, the functions of these signaling polypeptides in cotton remain largely unknown. In the current work, we studied the effects of the CLE family genes on growth and development in cotton. Based on the presence of a conserved CLE motif of 13 amino acids, 93 genes were characterized as GhCLE gene family members, and these were subcategorized into 7 groups. A preliminary analysis of the cotton CLE gene family indicated that the activity of its members tends to be conserved in terms of both the 13-residue conserved domain at the C-terminus and their subcellular localization pattern. Among the 14 tested genes, the ectopic overexpression of GhCLE5::GFP partially mimicked the phenotype of the clv3 mutant in Arabidopsis. GhCLE5 could affect the endogenous CLV3 in binding to the receptor complex, comprised of CLV1, CLV2, and CRN, in the yeast two-hybrid assay and split-luciferase assay. Silencing GhCLE5 in cotton caused a short seedling phenotype. Therefore, we concluded that the cotton GhCLE gene family is functionally conserved in apical shoot development regulation. These results indicate that CLE also plays roles in cotton development as a short peptide hormone.
Collapse
Affiliation(s)
- Ke Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kening Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ting Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.,College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 210058, Zhejiang, China
| | - Yuxin He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaoyuan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 210058, Zhejiang, China
| | - Guosheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xueying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 210058, Zhejiang, China.
| |
Collapse
|
9
|
Ma D, Endo S, Betsuyaku S, Shimotohno A, Fukuda H. CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. PLANT MOLECULAR BIOLOGY 2020; 104:561-574. [PMID: 32980951 DOI: 10.1007/s11103-020-01059-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/21/2020] [Indexed: 05/05/2023]
Abstract
This study focused on the role of CLE1-CLE7 peptides as environmental mediators and indicated that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots. Plants sense environmental stimuli and convert them into cellular signals, which are transmitted to distinct cells and tissues to induce adequate responses. Plant hormones and small secretory peptides often function as environmental stress mediators. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED proteins, CLE1-CLE7, which share closely related CLE domains, mediate environmental stimuli in Arabidopsis thaliana. Expression analysis of CLE1-CLE7 revealed that these genes respond to different environmental stimuli, such as nitrogen deprivation, nitrogen replenishment, cold, salt, dark, and sugar starvation, in a sophisticated manner. To further investigate the function of CLE2, we generated transgenic Arabidopsis lines expressing the β-glucuronidase gene under the control of the CLE2 promoter or expressing the CLE2 gene under the control of an estradiol-inducible promoter. We also generated cle2-1 and cle2-2 mutants using the CRISPR/Cas9 technology. In these transgenic lines, dark induced the expression of CLE2 in the root vasculature. Additionally, induction of CLE2 in roots induced the expression of various genes not only in roots but also in shoots, and genes related to light-dependent carbohydrate metabolism were particularly induced in shoots. In addition, cle2 mutant plants showed chlorosis when subjected to a shade treatment. These results suggest that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots.
Collapse
Affiliation(s)
- Dichao Ma
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Satoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigeyuki Betsuyaku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akie Shimotohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
10
|
Fromm H. GABA signaling in plants: targeting the missing pieces of the puzzle. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6238-6245. [PMID: 32761202 DOI: 10.1093/jxb/eraa358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 05/25/2023]
Abstract
The adaptation of plants to unstable environments relies on their ability to sense their surroundings and to generate and transmit corresponding signals to different parts of the plant to evoke changes necessary for optimizing growth and defense. Plants, like animals, contain a huge repertoire of intra- and intercellular signals, including organic and inorganic molecules. The occurrence of neurotransmitter-like signaling molecules in plants has been an intriguing field of research. Among these, γ-aminobutyric acid (GABA) was discovered in plants over half a century ago, and studies of its roles as a primary metabolite have been well documented, particularly in the context of stress responses. In contrast, evidence of the potential mechanism by which GABA acts as a signaling molecule in plants has only recently been reported. In spite of this breakthrough, the roles of GABA as a signaling molecule in plants have yet to be established and several aspects of the complexity of the GABA signaling system remain obscure. This review summarizes the uncertainties in GABA signaling in plants and suggests research directions and technologies that would help in answering unsolved questions.
Collapse
Affiliation(s)
- Hillel Fromm
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Zhang Z, Liu L, Kucukoglu M, Tian D, Larkin RM, Shi X, Zheng B. Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences. BMC Genomics 2020; 21:709. [PMID: 33045986 PMCID: PMC7552357 DOI: 10.1186/s12864-020-07114-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Background The CLV3/ESR-RELATED (CLE) gene family encodes small secreted peptides (SSPs) and plays vital roles in plant growth and development by promoting cell-to-cell communication. The prediction and classification of CLE genes is challenging because of their low sequence similarity. Results We developed a machine learning-aided method for predicting CLE genes by using a CLE motif-specific residual score matrix and a novel clustering method based on the Euclidean distance of 12 amino acid residues from the CLE motif in a site-weight dependent manner. In total, 2156 CLE candidates—including 627 novel candidates—were predicted from 69 plant species. The results from our CLE motif-based clustering are consistent with previous reports using the entire pre-propeptide. Characterization of CLE candidates provided systematic statistics on protein lengths, signal peptides, relative motif positions, amino acid compositions of different parts of the CLE precursor proteins, and decisive factors of CLE prediction. The approach taken here provides information on the evolution of the CLE gene family and provides evidence that the CLE and IDA/IDL genes share a common ancestor. Conclusions Our new approach is applicable to SSPs or other proteins with short conserved domains and hence, provides a useful tool for gene prediction, classification and evolutionary analysis.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science (HILIFE), University of Helsinki, 00014, Helsinki, Finland.,Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Dongdong Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Wallner ES. The value of asymmetry: how polarity proteins determine plant growth and morphology. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5733-5739. [PMID: 32687194 PMCID: PMC7888286 DOI: 10.1093/jxb/eraa329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Cell polarity is indispensable for forming complex multicellular organisms. Proteins that polarize at specific plasma membrane domains can either serve as scaffolds for effectors or coordinate intercellular communication and transport. Here, I give an overview of polarity protein complexes and their fundamental importance for plant development, and summarize novel mechanistic insights into their molecular networks. Examples are presented for proteins that polarize at specific plasma membrane domains to orient cell division planes, alter cell fate progression, control transport, direct cell growth, read global polarity axes, or integrate external stimuli into plant growth. The recent advances in characterizing protein polarity during plant development enable a better understanding of coordinated plant growth and open up intriguing paths that could provide a means to modulate plant morphology and adaptability in the future.
Collapse
|
13
|
Khan SU, Khan MHU, Ahmar S, Fan C. Comprehensive study and multipurpose role of the CLV3/ESR-related (CLE) genes family in plant growth and development. J Cell Physiol 2020; 236:2298-2317. [PMID: 32864739 DOI: 10.1002/jcp.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) is one of the most important signaling peptides families in plants. These peptides signaling are common in the cell to cell communication and control various physiological and developmental processes, that is cell differentiation and proliferation, self-incompatibility, and the defense response. The CLE signaling systems are conserved across the plant kingdom but have a diverse mode of action in various developmental processes in different species. In this review, we concise various methods of peptides identification, structure, and molecular identity of the CLE family, the developmental role of CLE genes/peptides in plants, environmental stimuli, and CLE family and some other novel progress in CLE genes/peptides in various crops, and so forth. According to previous literature, about 1,628 CLE genes were identified in land plants, which deeply explained the tale of plant development. Nevertheless, some important queries need to be addressed to get clear insights into the CLE gene family in other organisms and their role in various physiological and developmental processes. Furthermore, we summarized the power of the CLE family around the environment as well as bifunctional activity and the crystal structure recognition mechanism of CLE peptides by their receptors and CLE clusters functions. We strongly believed that the discovery of the CLE family in other organisms would provide a significant breakthrough for future revolutionary and functional studies.
Collapse
Affiliation(s)
- Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Hafeez U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
15
|
Li Q, Li M, Zhang D, Yu L, Yan J, Luo L. The peptide-encoding MtRGF3 gene negatively regulates nodulation of Medicago truncatula. Biochem Biophys Res Commun 2019; 523:66-71. [PMID: 31831172 DOI: 10.1016/j.bbrc.2019.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Leguminous root nodules specifically induced by rhizobium species fix nitrogen gas to gain nitrogen sources, which is important in sustainable agriculture and ecological balance. Several peptide signals are reported to be involved in regulation of legume nodule number and development. There are fifteen genes coding Root Meristem Growth Factor (RGF) peptide in Medicago truncatula, herein we find the expression of MtRGF3 is significantly induced by Sinorhizobium meliloti with production of Nod factors. The gene promoter is active in nodule primordia, young nodules and the meristem region of mature nodules. Knock-down (RNAi) roots of the gene (MtRGF3-RNAi) formed more root nodules than the empty vector control, and the nodule number decreased in MtRGF3-overexpressing (MtRGF3-OX) roots. Exogenous addition of the synthesized peptide significantly promoted primary root growth and inhibited lateral root emergence, in addition, the peptide application reduced the number of infection threads, nodule primordia and root nodules of M. truncatula. We also found that tyrosine sulfation determines the biological activity of MtRGF3 functioning in nodulation process, and MtRGF3 peptide negatively regulates nodulation in a dosage manner. These results demonstrate that the MtRGF3 peptide is a novel regulator during nodulation of Medicago trucatula.
Collapse
Affiliation(s)
- Qiong Li
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Mei Li
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Danping Zhang
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Junhui Yan
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
16
|
Ren SC, Song XF, Chen WQ, Lu R, Lucas WJ, Liu CM. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1043-1061. [PMID: 31127689 DOI: 10.1111/jipb.12846] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 05/29/2023]
Abstract
The phloem, located within the vascular system, is critical for delivery of nutrients and signaling molecules throughout the plant body. Although the morphological process and several factors regulating phloem differentiation have been reported, the molecular mechanism underlying its initiation remains largely unknown. Here, we report that the small peptide-coding gene, CLAVATA 3 (CLV3)/EMBEYO SURROUNDING REGION 25 (CLE25), the expression of which begins in provascular initial cells of 64-cell-staged embryos, and continues in sieve element-procambium stem cells and phloem lineage cells, during post-embryonic root development, facilitates phloem initiation in Arabidopsis. Knockout of CLE25 led to delayed protophloem formation, and in situ expression of an antagonistic CLE25G6T peptide compromised the fate-determining periclinal division of the sieve element precursor cell and the continuity of the phloem in roots. In stems of CLE25G6T plants the phloem formation was also compromised, and procambial cells were over-accumulated. Genetic and biochemical analyses indicated that a complex, consisting of the CLE-RESISTANT RECEPTOR KINASE (CLERK) leucine-rich repeat (LRR) receptor kinase and the CLV2 LRR receptor-like protein, is involved in perceiving the CLE25 peptide. Similar to CLE25, CLERK was also expressed during early embryogenesis. Taken together, our findings suggest that CLE25 regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex.
Collapse
Affiliation(s)
- Shi-Chao Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Wen-Qiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
17
|
Wang P, Wang Y, Ren F. Genome-wide identification of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family in grape (Vitis vinifera L.). BMC Genomics 2019; 20:553. [PMID: 31277568 PMCID: PMC6612224 DOI: 10.1186/s12864-019-5944-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background CLE genes play various biological roles in plant growth and development, as well as in responses to environmental stimuli. Results In the present study, we identified nine CLE genes in the grape genome using an effective identification method. We analyzed the expression profiles of grape CLE genes in different tissues and under environmental different stimuli. VvCLE3 was expressed in shoot apical meristem (SAM) enriched regions, and VvCLE6 was expressed in shoot tissue without SAM. When grapes were infected with bois noir, VvCLE2 was up-regulated. Under ABA treatment, VvCLE3 was down-regulated. VvCLE6 was up-regulated under high temperature stress. We found that VvCLE6 and VvCLE1 were highly expressed in root tissue. In addition, we compared the characteristics of CLEs from grape and other plant species. The CLE family in Sphagnum fallax underwent positive selection, while the CLE family in grape underwent purifying selection. The frequency of optimal codons and codon adaptation index of rice and grape CLE family members were positively correlated with GC content at the third site of synonymous codons, indicating that the dominant evolutionary pressure acting on rice and grape CLE genes was mutation pressure. We also found that closely related species had higher levels of similarity in relative synonymous codon usage in CLE genes. The rice CLE family was biased toward C and G nucleotides at third codon positions. Gene duplication and loss events were also found in grape CLE genes. Conclusion These results demonstrate an effective identification method for CLE motifs and increase the understanding of grape CLEs. Future research on CLE genes may have applications for grape breeding and cultivation to better understand root and nodulation development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5944-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Wang
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| | - Yongmei Wang
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| | - Fengshan Ren
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| |
Collapse
|
18
|
Chu Y, Jang J, Huang Z, van der Knaap E. Tomato locule number and fruit size controlled by natural alleles of lc and fas. PLANT DIRECT 2019; 3:e00142. [PMID: 31312784 PMCID: PMC6607973 DOI: 10.1002/pld3.142] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/27/2019] [Indexed: 05/22/2023]
Abstract
Improving yield by increasing the size of produce is an important selection criterion during the domestication of fruit and vegetable crops. Genes controlling meristem organization and organ formation work in concert to regulate the size of reproductive organs. In tomato, lc and fas control locule number, which often leads to enlarged fruits compared to the wild progenitors. LC is encoded by the tomato ortholog of WUSCHEL (WUS), whereas FAS is encoded by the tomato ortholog of CLAVATA3 (CLV3). The critical role of the WUS-CLV3 feedback loop in meristem organization has been demonstrated in several plant species. We show that mutant alleles for both loci in tomato led to an expansion of the SlWUS expression domain in young floral buds 2-3 days after initiation. Single and double mutant alleles of lc and fas maintain higher SlWUS expression during the development of the carpel primordia in the floral bud. This augmentation and altered spatial expression of SlWUS provided a mechanistic basis for the formation of multilocular and large fruits. Our results indicated that lc and fas are gain-of-function and partially loss-of-function alleles, respectively, while both mutations positively affect the size of tomato floral meristems. In addition, expression profiling showed that lc and fas affected the expression of several genes in biological processes including those involved in meristem/flower development, patterning, microtubule binding activity, and sterol biosynthesis. Several differentially expressed genes co-expressed with SlWUS have been identified, and they are enriched for functions in meristem regulation. Our results provide new insights into the transcriptional regulation of genes that modulate meristem maintenance and floral organ determinacy in tomato.
Collapse
Affiliation(s)
- Yi‐Hsuan Chu
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOhio
| | - Jyan‐Chyun Jang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOhio
| | - Zejun Huang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
| | - Esther van der Knaap
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
- Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgia
- Department of HorticultureUniversity of GeorgiaAthensGeorgia
| |
Collapse
|
19
|
Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. The Dynamics of Cambial Stem Cell Activity. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:293-319. [PMID: 30822110 DOI: 10.1146/annurev-arplant-050718-100402] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stem cell populations in meristematic tissues at distinct locations in the plant body provide the potency of continuous plant growth. Primary meristems, at the apices of the plant body, contribute mainly to the elongation of the main plant axes, whereas secondary meristems in lateral positions are responsible for the thickening of these axes. The stem cells of the vascular cambium-a secondary lateral meristem-produce the secondary phloem (bast) and secondary xylem (wood). The sites of primary and secondary growth are spatially separated, and mobile signals are expected to coordinate growth rates between apical and lateral stem cell populations. Although the underlying mechanisms have not yet been uncovered, it seems likely that hormones, peptides, and mechanical cues orchestrate primary and secondary growth. In this review, we highlight the current knowledge and recent discoveries of how cambial stem cell activity is regulated, with a focus on mobile signals and the response of cambial activity to environmental and stress factors.
Collapse
Affiliation(s)
- Urs Fischer
- KWS SAAT SE, 37555 Einbeck, Germany
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Ykä Helariutta
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Rishikesh P Bhalerao
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Yoro E, Nishida H, Ogawa-Ohnishi M, Yoshida C, Suzaki T, Matsubayashi Y, Kawaguchi M. PLENTY, a hydroxyproline O-arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:507-517. [PMID: 30351431 PMCID: PMC6322572 DOI: 10.1093/jxb/ery364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/12/2018] [Indexed: 05/21/2023]
Abstract
Legumes can survive in nitrogen-deficient environments by forming root-nodule symbioses with rhizobial bacteria; however, forming nodules consumes energy, and nodule numbers must thus be strictly controlled. Previous studies identified major negative regulators of nodulation in Lotus japonicus, including the small peptides CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and CLE-RS3, and their putative major receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1). CLE-RS2 is known to be expressed in rhizobia-inoculated roots, and is predicted to be post-translationally arabinosylated, a modification essential for its activity. Moreover, all three CLE-RSs suppress nodulation in a HAR1-dependent manner. Here, we identified PLENTY as a gene responsible for the previously isolated hypernodulation mutant plenty. PLENTY encoded a hydroxyproline O-arabinosyltransferase orthologous to ROOT DETERMINED NODULATION1 in Medicago truncatula. PLENTY was localized to the Golgi, and an in vitro analysis of the recombinant protein demonstrated its arabinosylation activity, indicating that CLE-RS1/2/3 may be substrates for PLENTY. The constitutive expression experiments showed that CLE-RS3 was the major candidate substrate for PLENTY, suggesting the substrate preference of PLENTY for individual CLE-RS peptides. Furthermore, a genetic analysis of the plenty har1 double mutant indicated the existence of another PLENTY-dependent and HAR1-independent pathway negatively regulating nodulation.
Collapse
Affiliation(s)
- Emiko Yoro
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Hanna Nishida
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Chie Yoshida
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
21
|
Ronald P, Joe A. Molecular mimicry modulates plant host responses to pathogens. ANNALS OF BOTANY 2018; 121:17-23. [PMID: 29182721 PMCID: PMC5786207 DOI: 10.1093/aob/mcx125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/14/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. SCOPE AND CONCLUSION This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides.
Collapse
Affiliation(s)
- Pamela Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Anna Joe
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
22
|
Konovalov AI, Ryzhkina IS, Salakhutdinova OA, Murtazina LI, Shevelev MD, Voeikov VL, Buravleva EV, Glybin AV, Skripnikov AY. Effect of self-organization and properties of aqueous disperse systems based on the moss peptide PpCLE2 in a low concentration range on the growth of Arabidopsis thaliana roots. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1943-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Corcilius L, Hastwell AH, Zhang M, Williams J, Mackay JP, Gresshoff PM, Ferguson BJ, Payne RJ. Arabinosylation Modulates the Growth-Regulating Activity of the Peptide Hormone CLE40a from Soybean. Cell Chem Biol 2017; 24:1347-1355.e7. [PMID: 28943356 DOI: 10.1016/j.chembiol.2017.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/05/2017] [Accepted: 08/15/2017] [Indexed: 11/21/2022]
Abstract
Small post-translationally modified peptide hormones mediate crucial developmental and regulatory processes in plants. CLAVATA/ENDOSPERM-SURROUNDING REGION (CLE) genes are found throughout the plant kingdom and encode for 12-13 amino acid peptides that must often undergo post-translational proline hydroxylation and glycosylation with O-β1,2-triarabinose moieties before they become functional. Apart from a few recent examples, a detailed understanding of the structure and function of most CLE hormones is yet to be uncovered. This is mainly owing to difficulties in isolating mature homogeneously modified CLE peptides from natural plant sources. In this study, we describe the efficient synthesis of a synthetic Araf3Hyp glycosylamino acid building block that was used to access a hitherto uninvestigated CLE hormone from soybean called GmCLE40a. Through the development and implementation of a novel in vivo root growth assay, we show that the synthetic triarabinosylated glycopeptide suppresses primary root growth in this important crop species.
Collapse
Affiliation(s)
- Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mengbai Zhang
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James Williams
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
24
|
Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions. PLoS One 2017; 12:e0175317. [PMID: 28384649 PMCID: PMC5383425 DOI: 10.1371/journal.pone.0175317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Tracheary Element Differentiation Inhibitory Factor (TDIF) belongs to the family of post-translationally modified CLE (CLAVATA3/embryo surrounding region (ESR)-related) peptide hormones that control root growth and define the delicate balance between stem cell proliferation and differentiation in SAM (shoot apical meristem) or RAM (root apical meristem). In Arabidopsis, Tracheary Element Differentiation Inhibitory Factor Receptor (TDR) and its ligand TDIF signaling pathway is involved in the regulation of procambial cell proliferation and inhibiting its differentiation into xylem cells. Here we present the crystal structures of the extracellular domains (ECD) of TDR alone and in complex with its ligand TDIF resolved at 2.65 Ǻ and 2.75 Ǻ respectively. These structures provide insights about the ligand perception and specific interactions between the CLE peptides and their cognate receptors. Our in vitro biochemical studies indicate that the interactions between the ligands and the receptors at the C-terminal anchoring site provide conserved binding. While the binding interactions occurring at the N-terminal anchoring site dictate differential binding specificities between different ligands and receptors. Our studies will open different unknown avenues of TDR-TDIF signaling pathways that will enhance our knowledge in this field highlighting the receptor ligand interaction, receptor activation, signaling network, modes of action and will serve as a structure function relationship model between the ligand and the receptor for various similar leucine-rich repeat receptor-like kinases (LRR-RLKs).
Collapse
|
25
|
Transcriptome Analysis of the Signalling Networks in Coronatine-Induced Secondary Laticifer Differentiation from Vascular Cambia in Rubber Trees. Sci Rep 2016; 6:36384. [PMID: 27808245 PMCID: PMC5093416 DOI: 10.1038/srep36384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022] Open
Abstract
The secondary laticifer in rubber tree (Hevea brasiliensis Muell. Arg.) is a specific tissue within the secondary phloem. This tissue differentiates from the vascular cambia, and its function is natural rubber biosynthesis and storage. Given that jasmonates play a pivotal role in secondary laticifer differentiation, we established an experimental system with jasmonate (JA) mimic coronatine (COR) for studying the secondary laticifer differentiation: in this system, differentiation occurs within five days of the treatment of epicormic shoots with COR. In the present study, the experimental system was used to perform transcriptome sequencing and gene expression analysis. A total of 67,873 unigenes were assembled, and 50,548 unigenes were mapped at least in one public database. Of these being annotated unigenes, 15,780 unigenes were differentially expressed early after COR treatment, and 19,824 unigenes were differentially expressed late after COR treatment. At the early stage, 8,646 unigenes were up-regulated, while 7,134 unigenes were down-regulated. At the late stage, the numbers of up- and down-regulated unigenes were 7,711 and 12,113, respectively. The annotation data and gene expression analysis of the differentially expressed unigenes suggest that JA-mediated signalling, Ca2+ signal transduction and the CLAVATA-MAPK-WOX signalling pathway may be involved in regulating secondary laticifer differentiation in rubber trees.
Collapse
|
26
|
Ranf S, Scheel D, Lee J. Challenges in the identification of microbe-associated molecular patterns in plant and animal innate immunity: a case study with bacterial lipopolysaccharide. MOLECULAR PLANT PATHOLOGY 2016; 17:1165-9. [PMID: 27604847 PMCID: PMC6638395 DOI: 10.1111/mpp.12452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Stefanie Ranf
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 2, D-85354, Freising-Weihenstephan, Germany.
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany.
| | - Dierk Scheel
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Justin Lee
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| |
Collapse
|
27
|
Morita J, Kato K, Nakane T, Kondo Y, Fukuda H, Nishimasu H, Ishitani R, Nureki O. Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide. Nat Commun 2016; 7:12383. [PMID: 27498761 PMCID: PMC4979064 DOI: 10.1038/ncomms12383] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
In plants, leucine-rich repeat receptor-like kinases (LRR-RKs) perceive ligands, including peptides and small molecules, to regulate various physiological processes. TDIF, a member of the CLE peptide family, specifically interacts with the LRR-RK TDR to inhibit meristem differentiation into tracheary elements, and promotes cell proliferation. Here we report the crystal structure of the extracellular domain of TDR in complex with the TDIF peptide. The extracellular domain of TDR adopts a superhelical structure comprising 22 LRRs, and specifically recognizes TDIF by its inner concave surface. Together with our biochemical and sequence analyses, our structure reveals a conserved TDIF-recognition mechanism of TDR among plant species. Furthermore, a structural comparison of TDR with other plant LRR-RKs suggested the activation mechanism of TDR by TDIF. The structure of this CLE peptide receptor provides insights into the recognition mechanism of the CLE family peptides. The TDF peptide interacts with the leucine-rich repeat receptor-like kinase TDR to regulate meristem differentiation in plants. Here, the authors solve the structure of the extracellular domain of TDR in complex with TDIF and propose a mechanism for TDIF recognition.
Collapse
Affiliation(s)
- Junko Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kazuki Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,JST, PRESTO, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
28
|
Canut H, Albenne C, Jamet E. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:983-90. [PMID: 26945515 DOI: 10.1016/j.bbapap.2016.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Hervé Canut
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Cécile Albenne
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France.
| |
Collapse
|
29
|
Más P, Martínez-García J, Riechmann JL, Pelaz S. ICREA Workshop: from model systems to crops - challenges for a new era in plant biology. PHYSIOLOGIA PLANTARUM 2015; 155:1-3. [PMID: 26118846 DOI: 10.1111/ppl.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Paloma Más
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Jaime Martínez-García
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- ICREA (Institució Catalana de Recerca i EstudisAvançats), Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- ICREA (Institució Catalana de Recerca i EstudisAvançats), Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- ICREA (Institució Catalana de Recerca i EstudisAvançats), Barcelona, Spain
| |
Collapse
|
30
|
Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. Repeat-containing protein effectors of plant-associated organisms. FRONTIERS IN PLANT SCIENCE 2015; 6:872. [PMID: 26557126 PMCID: PMC4617103 DOI: 10.3389/fpls.2015.00872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Collapse
Affiliation(s)
- Carl H. Mesarich
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
- *Correspondence: Carl H. Mesarich
| | - Joanna K. Bowen
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| | - Cyril Hamiaux
- Human Responses, The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Matthew D. Templeton
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| |
Collapse
|