1
|
Braidotti R, Falchi R, Calderan A, Pichierri A, Vankova R, Dobrev PI, Griesser M, Sivilotti P. Multi-hormonal analysis and aquaporins regulation reveal new insights on drought tolerance in grapevine. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154243. [PMID: 38593590 DOI: 10.1016/j.jplph.2024.154243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Disentangling the factors that foster the tolerance to water stress in plants could provide great benefits to crop productions. In a two-year experiment, two new PIWI (fungus resistant) grapevine varieties, namely Merlot Kanthus and Sauvignon Kretos (Vitis hybrids), grown in the field, were subjected to two different water regimes: weekly irrigated (IR) or not irrigated (NIR) for two months during the summer. The two varieties exhibited large differences in terms of performance under water-limiting conditions. In particular, Merlot Kanthus strongly decreased stem water potential (Ψs) under water shortage and Sauvignon Kretos maintained higher Ψs values accompanied by generally high stomatal conductance and net carbon assimilation, regardless of the treatment. We hypothesized differences in the hormonal profile that mediate most of the plant responses to stresses or in the regulation of the aquaporins that control the water transport in the leaves. In general, substantial differences were found in the abundance of different hormonal classes, with Merlot Kanthus reporting higher concentrations of cytokinins while Sauvignon Kretos higher concentrations of auxins, jasmonate and salicylic acid. Interestingly, under water stress conditions ABA modulation appeared similar between the two cultivars, while other hormones were differently modulated between the two varieties. Regarding the expression of aquaporin encoding genes, Merlot Kanthus showed a significant downregulation of VvPIP2;1 and VvTIP2;1 in leaves exposed to water stress. Both genes have probably a role in influencing leaf conductance, and VvTIP2;1 has been correlated with stomatal conductance values. This evidence suggests that the two PIWI varieties are characterized by different behaviour in response to drought. Furthermore, the findings of the study may be generalized, suggesting the involvement of a complex hormonal cross-talk and aquaporins in effectively influencing plant performance under water shortage.
Collapse
Affiliation(s)
- Riccardo Braidotti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy
| | - Rachele Falchi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy.
| | - Alberto Calderan
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Alessandro Pichierri
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, 6, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, 6, Czech Republic
| | - Michaela Griesser
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| | - Paolo Sivilotti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
2
|
Grunwald Y, Gosa SC, Torne-Srivastava T, Moran N, Moshelion M. Out of the blue: Phototropins of the leaf vascular bundle sheath mediate the regulation of leaf hydraulic conductance by blue light. THE PLANT CELL 2022; 34:2328-2342. [PMID: 35285491 PMCID: PMC9134085 DOI: 10.1093/plcell/koac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) leaf veins bundle-sheath cells (BSCs)-a selective barrier to water and solutes entering the mesophyll-increase the leaf radial hydraulic conductance (Kleaf) by acidifying the xylem sap by their plasma membrane H+-ATPase, AHA2. Based on this and on the BSCs' expression of phototropins PHOT1 and PHOT2, and the known blue light (BL)-induced Kleaf increase, we hypothesized that, resembling the guard cells, BL perception by the BSCs' phots activates its H+-ATPase, which, consequently, upregulates Kleaf. Indeed, under BL, the Kleaf of the knockout mutant lines phot1-5, phot2-1, phot1-5 phot2-1, and aha2-4 was lower than that of the wild-type (WT). BSC-only-directed complementation of phot1-5 or aha2-4 by PHOT1 or AHA2, respectively, restored the BL-induced Kleaf increase. BSC-specific silencing of PHOT1 or PHOT2 prevented such Kleaf increase. A xylem-fed kinase inhibitor (tyrphostin 9) replicated this also in WT plants. White light-ineffective in the phot1-5 mutant-acidified the xylem sap (relative to darkness) in WT and in the PHOT1-complemented phot1-5. These results, supported by BL increase of BSC protoplasts' water permeability and cytosolic pH and their hyperpolarization by BL, identify the BSCs as a second phot-controlled water conductance element in leaves, in series with stomatal conductance. Through both, BL regulates the leaf water balance.
Collapse
Affiliation(s)
| | | | - Tanmayee Torne-Srivastava
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Moran
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
3
|
Xing D, Mao R, Li Z, Wu Y, Qin X, Fu W. Leaf Intracellular Water Transport Rate Based on Physiological Impedance: A Possible Role of Leaf Internal Retained Water in Photosynthesis and Growth of Tomatoes. FRONTIERS IN PLANT SCIENCE 2022; 13:845628. [PMID: 35432403 PMCID: PMC9010976 DOI: 10.3389/fpls.2022.845628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Water consumed by photosynthesis and growth rather than transpiration accounts for only 1-3% of the water absorbed by roots. Leaf intracellular water transport rate (LIWTR) based on physiological impedance (Z) provides information on the transport traits of the leaf internal retained water, which helps determine the intracellular water status. Solanum lycopersicum plants were subjected to five different levels of relative soil water content (SWC R ) (e.g., 100, 90, 80, 70, and 60%) for 3 months. The leaf water potential (ΨL), Z, photosynthesis, growth, and water-use efficiency (WUE) were determined. A coupling model between gripping force and physiological impedance was established according to the Nernst equation, and the inherent LIWTR (LIWTR i ) was determined. The results showed that LIWTR i together with Ψ L altered the intracellular water status as water supply changed. When SWC R was 100, 90, and 80%, stomatal closure reduced the transpiration and decreased the water transport within leaves. Net photosynthetic rate (P N) was inhibited by the decreased stomatal conductance (g s ) or Ψ L , but constant transport of the intracellular water was conducive to plant growth or dry matter accumulation. Remarkably, increased LIWTR i helped to improve the delivery and WUE of the retained leaf internal water, which maintained P N and improved the WUE at 70% but could not keep the plant growth and yields at 70 and 60% due to the further decrease of water supply and Ψ L . The increased transport rate of leaf intracellular water helped plants efficiently use intracellular water and maintain growth or photosynthesis, therefore, adapting to the decreasing water supply. The results demonstrate that the importance of transport of the leaf intracellular water in plant responses to water deficit by using electrophysiological parameters. However, the LIWTR in this research is not directly linked to the regulation of photosynthesis and growth, and the establishment of the direct relationship between leaf internal retained water and photosynthesis and growth needs further research.
Collapse
Affiliation(s)
- Deke Xing
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Renlong Mao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Zhenyi Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Yanyou Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiaojie Qin
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Weiguo Fu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Sabir F, Zarrouk O, Noronha H, Loureiro-Dias MC, Soveral G, Gerós H, Prista C. Grapevine aquaporins: Diversity, cellular functions, and ecophysiological perspectives. Biochimie 2021; 188:61-76. [PMID: 34139292 DOI: 10.1016/j.biochi.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
High-scored premium wines are typically produced under moderate drought stress, suggesting that the water status of grapevine is crucial for wine quality. Aquaporins greatly influence the plant water status by facilitating water diffusion across the plasma membrane in a tightly regulated manner. They adjust the hydraulic conductance of the plasma membrane rapidly and reversibly, which is essential in specific physiological events, including adaptation to soil water scarcity. The comprehension of the sophisticated plant-water relations at the molecular level are thus important to optimize agricultural practices or to assist plant breeding programs. This review explores the recent progresses in understanding the water transport in grapevine at the cellular level through aquaporins and its regulation. Important aspects, including aquaporin structure, diversity, cellular localization, transport properties, and regulation at the cellular and whole plant level are addressed. An ecophysiological perspective about the roles of grapevine aquaporins in plant response to drought stress is also provided.
Collapse
Affiliation(s)
- Farzana Sabir
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| | - Olfa Zarrouk
- Association SFCOLAB - Collaborative Laboratory for Digital Innovation in Agriculture, Rua Cândido dos Reis nº1, Espaço SFCOLAB, 2560-312, Torres Vedras, Portugal
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Maria C Loureiro-Dias
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Catarina Prista
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal; Departamento de Recursos Biologicos, Ambiente e Territorio (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
5
|
Gambetta GA, Herrera JC, Dayer S, Feng Q, Hochberg U, Castellarin SD. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4658-4676. [PMID: 32433735 PMCID: PMC7410189 DOI: 10.1093/jxb/eraa245] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/14/2020] [Indexed: 05/17/2023]
Abstract
Water availability is arguably the most important environmental factor limiting crop growth and productivity. Erratic precipitation patterns and increased temperatures resulting from climate change will likely make drought events more frequent in many regions, increasing the demand on freshwater resources and creating major challenges for agriculture. Addressing these challenges through increased irrigation is not always a sustainable solution so there is a growing need to identify and/or breed drought-tolerant crop varieties in order to maintain sustainability in the context of climate change. Grapevine (Vitis vinifera), a major fruit crop of economic importance, has emerged as a model perennial fruit crop for the study of drought tolerance. This review synthesizes the most recent results on grapevine drought responses, the impact of water deficit on fruit yield and composition, and the identification of drought-tolerant varieties. Given the existing gaps in our knowledge of the mechanisms underlying grapevine drought responses, we aim to answer the following question: how can we move towards a more integrative definition of grapevine drought tolerance?
Collapse
Affiliation(s)
- Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRA, Université de Bordeaux, ISVV, chemin de Leysotte, Villenave d’Ornon, France
- Correspondence: or
| | - Jose Carlos Herrera
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Silvina Dayer
- EGFV, Bordeaux-Sciences Agro, INRA, Université de Bordeaux, ISVV, chemin de Leysotte, Villenave d’Ornon, France
| | - Quishuo Feng
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Uri Hochberg
- ARO Volcani Center, Institute of Soil, Water and Environmental Sciences, Rishon Lezion, Israel
| | - Simone D Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
- Correspondence: or
| |
Collapse
|
6
|
Xiong D, Nadal M. Linking water relations and hydraulics with photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:800-815. [PMID: 31677190 DOI: 10.1111/tpj.14595] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 05/28/2023]
Abstract
For land plants, water is the principal governor of growth. Photosynthetic performance is highly dependent on the stable and suitable water status of leaves, which is balanced by the water transport capacity, the water loss rate as well as the water capacitance of the plant. This review discusses the links between leaf water status and photosynthesis, specifically focussing on the coordination of CO2 and water transport within leaves, and the potential role of leaf capacitance and elasticity on CO2 and water transport.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Institute of Agro-Environmental Research and Water Economy (INAGEA), Carretera de Valldemossa, 07122, Palma, Spain
| |
Collapse
|
7
|
North GB, Brinton EK, Browne MG, Gillman MG, Roddy AB, Kho TL, Wang E, Fung VA, Brodersen CR. Hydraulic conductance, resistance, and resilience: how leaves of a tropical epiphyte respond to drought. AMERICAN JOURNAL OF BOTANY 2019; 106:943-957. [PMID: 31294833 PMCID: PMC6852343 DOI: 10.1002/ajb2.1323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/06/2019] [Indexed: 05/05/2023]
Abstract
PREMISE Because of its broad range in the neotropical rainforest and within tree canopies, the tank bromeliad Guzmania monostachia was investigated as a model of how varying leaf hydraulic conductance (Kleaf ) could help plants resist and recover from episodic drought. The two pathways of Kleaf , inside and outside the xylem, were also examined to determine the sites and causes of major hydraulic resistances within the leaf. METHODS We measured leaf hydraulic conductance for plants in the field and laboratory under wet, dry, and rewetted conditions and applied physiological, anatomical, and gene expression analysis with modeling to investigate changes in Kleaf . RESULTS After 7 d with no rain in the field or 14 days with no water in the glasshouse, Kleaf decreased by 50% yet increased to hydrated values within 4 d of tank refilling. Staining to detect embolism combined with modeling indicated that changes outside the xylem were of greater importance to Kleaf than were changes inside the xylem and were associated with changes in intercellular air spaces (aerenchyma), aquaporin expression and inhibition, and cuticular conductance. CONCLUSIONS Low values for all conductances during drying, particularly in pathways outside the xylem, lead to hydraulic resilience for this species and may also contribute to its broad environmental tolerances.
Collapse
Affiliation(s)
| | | | - Marvin G. Browne
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
| | | | - Adam B. Roddy
- School of Forestry & Environmental StudiesYale UniversityNew HavenCTUSA
| | - Tiffany L. Kho
- Biology DepartmentUniversity of San FranciscoSan FranciscoCAUSA
| | - Emily Wang
- Department of BiologyOccidental CollegeLos AngelesCAUSA
| | - Vitor A. Fung
- Department of BiotechnologyJohns Hopkins UniversityBaltimoreMDUSA
| | | |
Collapse
|
8
|
Shelden MC, Vandeleur R, Kaiser BN, Tyerman SD. A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation. FRONTIERS IN PLANT SCIENCE 2017; 8:1893. [PMID: 29163613 PMCID: PMC5681967 DOI: 10.3389/fpls.2017.01893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 05/11/2023]
Abstract
We report physiological, anatomical and molecular differences in two economically important grapevine (Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψL) and stem water potential (ψS), stomatal conductance (gs), transpiration (E), petiole hydraulics (KPet), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψL in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ50Petiole = -1.14 and ψ50Stem = -2.24 MPa) but not in Grenache (ψ50Petiole = -0.73 and ψ50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher KPet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves (VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1, and VvTIP2;1) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψL and ψS in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin genes correlated with gas exchange measurements, however, these genes differed between cultivars. In summary, the data shows two contrasting responses in petiole hydraulics and aquaporin expression between the near-isohydric cultivar, Grenache and anisohydric cultivar, Chardonnay.
Collapse
Affiliation(s)
- Megan C. Shelden
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca Vandeleur
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Brent N. Kaiser
- Centre for Carbon, Water and Food, School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Stephen D. Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Martin-StPaul N, Delzon S, Cochard H. Plant resistance to drought depends on timely stomatal closure. Ecol Lett 2017; 20:1437-1447. [DOI: 10.1111/ele.12851] [Citation(s) in RCA: 357] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Hervé Cochard
- Université Clermont-Auvergne; INRA; PIAF; 63000, Clermont-Ferrand France
| |
Collapse
|
10
|
Hochberg U, Bonel AG, David-Schwartz R, Degu A, Fait A, Cochard H, Peterlunger E, Herrera JC. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability. PLANTA 2017; 245:1091-1104. [PMID: 28214919 PMCID: PMC5432590 DOI: 10.1007/s00425-017-2662-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/06/2017] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s) and leaf conductance (k leaf) under low stem water potential (Ψs), despite their high xylem vulnerability and in agreement with their lower turgor loss point (ΨTLP). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.
Collapse
Affiliation(s)
- Uri Hochberg
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
- PIAF, INRA, Univ. Clermont-Auvergne, 63100, Clermont-Ferrand, France
| | - Andrea Giulia Bonel
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Centre, 50250, Bet Dagan, Israel
| | - Asfaw Degu
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Sede Boqer, Israel
| | - Aaron Fait
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Sede Boqer, Israel
| | - Hervé Cochard
- PIAF, INRA, Univ. Clermont-Auvergne, 63100, Clermont-Ferrand, France
| | - Enrico Peterlunger
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Jose Carlos Herrera
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy.
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
11
|
Kadam S, Abril A, Dhanapal AP, Koester RP, Vermerris W, Jose S, Fritschi FB. Characterization and Regulation of Aquaporin Genes of Sorghum [ Sorghum bicolor (L.) Moench] in Response to Waterlogging Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:862. [PMID: 28611797 PMCID: PMC5447673 DOI: 10.3389/fpls.2017.00862] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/09/2017] [Indexed: 05/25/2023]
Abstract
Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. This study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18 and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Further experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve waterlogging tolerance in sorghum.
Collapse
Affiliation(s)
- Suhas Kadam
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Alejandra Abril
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, GainesvilleFL, United States
| | - Arun P. Dhanapal
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Robert P. Koester
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science – Institute of Food and Agricultural Sciences, University of Florida, GainesvilleFL, United States
- University of Florida Genetics Institute, University of Florida, GainesvilleFL, United States
| | - Shibu Jose
- The Center for Agroforestry, University of Missouri, ColumbiaMO, United States
| | - Felix B. Fritschi
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| |
Collapse
|
12
|
Lavoie-Lamoureux A, Sacco D, Risse PA, Lovisolo C. Factors influencing stomatal conductance in response to water availability in grapevine: a meta-analysis. PHYSIOLOGIA PLANTARUM 2017; 159:468-482. [PMID: 27859326 DOI: 10.1111/ppl.12530] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 05/05/2023]
Abstract
The main factors regulating grapevine response to decreasing water availability were assessed under statistical support using published data related to leaf water relations in an extensive range of scion and rootstock genotypes. Matching leaf water potential (Ψleaf ) and stomatal conductance (gs ) data were collected from peer-reviewed literature with associated information. The resulting database contained 718 data points from 26 different Vitis vinifera varieties investigated as scions, 15 non-V. vinifera rootstock genotypes and 11 own-rooted V. vinifera varieties. Linearised data were analysed using the univariate general linear model (GLM) with factorial design including biological (scion and rootstock genotypes), methodological and environmental (soil) fixed factors. The first GLM performed on the whole database explained 82.4% of the variability in data distribution having the rootstock genotype the greatest contribution to variability (19.1%) followed by the scion genotype (16.2%). A classification of scions and rootstocks according to their mean predicted gs in response to moderate water stress was generated. This model also revealed that gs data obtained using a porometer were in average 2.1 times higher than using an infra-red gas analyser. The effect of soil water-holding properties was evaluated in a second analysis on a restricted database and showed a scion-dependant effect, which was dominant over rootstock effect, in predicting gs values. Overall the results suggest that a continuum exists in the range of stomatal sensitivities to water stress in V. vinifera, rather than an isohydric-anisohydric dichotomy, that is further enriched by the diversity of scion-rootstock combinations and their interaction with different soils.
Collapse
Affiliation(s)
- Anouk Lavoie-Lamoureux
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Grugliasco, 10095, Italy
| | - Dario Sacco
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Grugliasco, 10095, Italy
| | - Paul-André Risse
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Grugliasco, 10095, Italy
| | - Claudio Lovisolo
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Grugliasco, 10095, Italy
| |
Collapse
|
13
|
Abstract
Succulent plants are iconic components of the florae of many terrestrial ecosystems, but despite having caused fascination and prompted investigation for centuries, they still harbour many secrets in terms of physiological function and evolution. Tackling these mysteries is important, as this will not only provide insights into the dynamics and details of the convergent evolution of a major adaptive syndrome, but also inform efforts to conserve endangered biodiversity and utilize the unique physiological characteristics of succulents for biofuel and biomass production. Here I review advances in the phylogeny and organismal biology of succulent plants, and discuss how insights from recent work in the wider fields of plant hydraulics and photosynthetic physiology may relate to succulents. The potential for the exploration of mechanistic relationships between anatomical structure and physiological function to improve our understanding of the constraints that have shaped the evolution of succulence is highlighted. Finally, attention is drawn to how new methodologies and technologies provide exciting opportunities to address the wide range of outstanding questions in succulent plant biology.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|