1
|
Stanfield RC, Forrestel EJ, Elmendorf KE, Bagshaw SB, Bartlett MK. Phloem anatomy predicts berry sugar accumulation across 13 wine-grape cultivars. FRONTIERS IN PLANT SCIENCE 2024; 15:1360381. [PMID: 38576794 PMCID: PMC10991835 DOI: 10.3389/fpls.2024.1360381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Introduction Climate change is impacting the wine industry by accelerating ripening processes due to warming temperatures, especially in areas of significant grape production like California. Increasing temperatures accelerate the rate of sugar accumulation (measured in ⁰Brix) in grapes, however this presents a problem to wine makers as flavor profiles may need more time to develop properly. To alleviate the mismatch between sugar accumulation and flavor compounds, growers may sync vine cultivars with climates that are most amenable to their distinct growing conditions. However, the traits which control such cultivar specific climate adaptation, especially for ⁰Brix accumulation rate, are poorly understood. Recent studies have shown that higher rates of fruit development and sugar accumulation are predicted by larger phloem areas in different organs of the plant. Methods Here we test this phloem area hypothesis using a common garden experiment in the Central Valley of Northern California using 18 cultivars of the common grapevine (Vitis vinifera) and assess the grape berry sugar accumulation rates as a function of phloem area in leaf and grape organs. Results We find that phloem area in the leaf petiole organ as well as the berry pedicel is a significant predictor of ⁰Brix accumulation rate across 13 cultivars and that grapes from warm climates overall have larger phloem areas than those from hot climates. In contrast, other physiological traits such as photosynthetic assimilation and leaf water potential did not predict berry accumulation rates. Discussion As hot climate cultivars have lower phloem areas which would slow down brix accumulation, growers may have inadvertently been selecting this trait to align flavor development with sugar accumulation across the common cultivars tested. This work highlights a new trait that can be easily phenotyped (i.e., petiole phloem area) and be used for growers to match cultivar more accurately with the temperature specific climate conditions of a growing region to obtain satisfactory sugar accumulation and flavor profiles.
Collapse
Affiliation(s)
- Ryan C. Stanfield
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, United States
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| | - Elisabeth J. Forrestel
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| | - Kayla E. Elmendorf
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| | - Sophia B. Bagshaw
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| | - Megan K. Bartlett
- Department of Viticulture & Enology, University of California Davis, Davis, CA, United States
| |
Collapse
|
2
|
Hongo A, Abe H, Yabiku T, Ueno O. Occurrence of distinctive cells and effects of irradiance on vascular formation in leaves of shade-tolerant C 4 grass Paspalum conjugatum. JOURNAL OF PLANT RESEARCH 2023; 136:691-704. [PMID: 37368133 DOI: 10.1007/s10265-023-01475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The denser leaf vasculature of C4 plants than of C3 plants may suit rapid export of assimilates associated with their higher photosynthetic rate. However, some C4 grasses have partially reduced leaf vasculature with vascular bundle (VB)-free bundle-sheath cells called distinctive cells (DCs). The shade-tolerant C4 grass Paspalum conjugatum has such a reduced leaf vascular system with DCs. We examined whether irradiance during growth affects vascular formation in leaves of P. conjugatum grown under 100%, 30%, or 14% sunlight for 1 month alongside the C4 grass maize. Under all conditions, P. conjugatum leaves had partially reduced vasculature: DCs and incomplete small VBs without phloem occurred between VBs with a normal structure consisting of both xylem and phloem. Shaded plants had less phloem in the small VBs than the full-sunlit plants. In maize, however, all VBs always had both xylem and phloem under all light conditions. The net photosynthetic rate of both grasses was reduced under shade; that of P. conjugatum was always lower than that of maize under all light conditions, but was reduced less by shade than that of maize. The light compensation point was lower in P. conjugatum than in maize, indicating that P. conjugatum acclimatizes better to low light. The reduction of phloem in VBs of P. conjugatum may be an acclimatization to shade, because dense vasculature may be expensive for C4 plants growing in environments where the higher photosynthetic rate is not realized.
Collapse
Affiliation(s)
- Akane Hongo
- School of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hinako Abe
- School of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Yabiku
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Adams WW, Stewart JJ, Polutchko SK, Cohu CM, Muller O, Demmig-Adams B. Foliar Phenotypic Plasticity Reflects Adaptation to Environmental Variability. PLANTS (BASEL, SWITZERLAND) 2023; 12:2041. [PMID: 37653958 PMCID: PMC10224448 DOI: 10.3390/plants12102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
Arabidopsis thaliana ecotypes adapted to native habitats with different daylengths, temperatures, and precipitation were grown experimentally under seven combinations of light intensity and leaf temperature to assess their acclimatory phenotypic plasticity in foliar structure and function. There were no differences among ecotypes when plants developed under moderate conditions of 400 µmol photons m-2 s-1 and 25 °C. However, in response to more extreme light or temperature regimes, ecotypes that evolved in habitats with pronounced differences in either the magnitude of changes in daylength or temperature or in precipitation level exhibited pronounced adjustments in photosynthesis and transpiration, as well as anatomical traits supporting these functions. Specifically, when grown under extremes of light intensity (100 versus 1000 µmol photons m-2 s-1) or temperature (8 °C versus 35 °C), ecotypes from sites with the greatest range of daylengths and temperature over the growing season exhibited the greatest differences in functional and structural features related to photosynthesis (light- and CO2-saturated capacity of oxygen evolution, leaf dry mass per area or thickness, phloem cells per minor vein, and water-use efficiency of CO2 uptake). On the other hand, the ecotype from the habitat with the lowest precipitation showed the greatest plasticity in features related to water transport and loss (vein density, ratio of water to sugar conduits in foliar minor veins, and transpiration rate). Despite these differences, common structure-function relationships existed across all ecotypes and growth conditions, with significant positive, linear correlations (i) between photosynthetic capacity (ranging from 10 to 110 µmol O2 m-2 s-1) and leaf dry mass per area (from 10 to 75 g m-2), leaf thickness (from 170 to 500 µm), and carbohydrate-export infrastructure (from 6 to 14 sieve elements per minor vein, from 2.5 to 8 µm2 cross-sectional area per sieve element, and from 16 to 82 µm2 cross-sectional area of sieve elements per minor vein); (ii) between transpiration rate (from 1 to 17 mmol H2O m-2 s-1) and water-transport infrastructure (from 3.5 to 8 tracheary elements per minor vein, from 13.5 to 28 µm2 cross-sectional area per tracheary element, and from 55 to 200 µm2 cross-sectional area of tracheary elements per minor vein); (iii) between the ratio of transpirational water loss to CO2 fixation (from 0.2 to 0.7 mol H2O to mmol-1 CO2) and the ratio of water to sugar conduits in minor veins (from 0.4 to 1.1 tracheary to sieve elements, from 4 to 6 µm2 cross-sectional area of tracheary to sieve elements, and from 2 to 6 µm2 cross-sectional area of tracheary elements to sieve elements per minor vein); (iv) between sugar conduits and sugar-loading cells; and (v) between water conducting and sugar conducting cells. Additionally, the proportion of water conduits to sugar conduits was greater for all ecotypes grown experimentally under warm-to-hot versus cold temperature. Thus, developmental acclimation to the growth environment included ecotype-dependent foliar structural and functional adjustments resulting in multiple common structural and functional relationships.
Collapse
Affiliation(s)
- William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Jared J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Christopher M. Cohu
- Environmental Science and Technology, Colorado Mesa University, Grand Junction, CO 81502, USA;
| | - Onno Muller
- Pflanzenwissenschaften (IBG-2), Institut für Bio- und Geowissenschaften, Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| |
Collapse
|
4
|
Distinct Cold Acclimation of Productivity Traits in Arabidopsis thaliana Ecotypes. Int J Mol Sci 2022; 23:ijms23042129. [PMID: 35216246 PMCID: PMC8879503 DOI: 10.3390/ijms23042129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Improvement of crop climate resilience will require an understanding of whole-plant adaptation to specific local environments. This review places features of plant form and function related to photosynthetic productivity, as well as associated gene-expression patterns, into the context of the adaptation of Arabidopsis thaliana ecotypes to local environments with different climates in Sweden and Italy. The growth of plants under common cool conditions resulted in a proportionally greater emphasis on the maintenance of photosynthetic activity in the Swedish ecotype. This is compared to a greater emphasis on downregulation of light-harvesting antenna size and upregulation of a host of antioxidant enzymes in the Italian ecotype under these conditions. This differential response is discussed in the context of the climatic patterns of the ecotypes’ native habitats with substantial opportunity for photosynthetic productivity under mild temperatures in Italy but not in Sweden. The Swedish ecotype’s response is likened to pushing forward at full speed with productivity under low temperature versus the Italian ecotype’s response of staying safe from harm (maintaining redox homeostasis) while letting productivity decline when temperatures are transiently cold. It is concluded that either strategy can offer directions for the development of climate-resilient crops for specific locations of cultivation.
Collapse
|
5
|
Adams Iii WW, Stewart JJ, Polutchko SK, Demmig-Adams B. Foliar sieve elements: Nexus of the leaf. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153601. [PMID: 34953412 DOI: 10.1016/j.jplph.2021.153601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
In this review, a central position of foliar sieve elements in linking leaf structure and function is explored. Results from studies involving plants grown under, and acclimated to, different growth regimes are used to identify significant, linear relationships between features of minor vein sieve elements and those of 1) leaf photosynthetic capacity that drives sugar synthesis, 2) overall leaf structure that serves as the platform for sugar production, 3) phloem components that facilitate the loading of sugars (companion & phloem parenchyma cells), and 4) the tracheary elements that import water to support photosynthesis (and stomatal opening) as well as mass flow of sugars out of the leaf. Despite comprising only a small fraction of physical space within the leaf, sieve elements represent a hub through which multiple functions of the leaf intersect. As the conduits for export of energy-rich carbohydrates, essential mineral nutrients, and information carriers, sieve elements play a central role in fueling and orchestrating development and function of the plant as well as, by extension, of natural and human communities that depend on plants as producers and partners in the global carbon cycle.
Collapse
Affiliation(s)
- William W Adams Iii
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Stephanie K Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
6
|
Baker CR, Stewart JJ, Amstutz CL, Ching LG, Johnson JD, Niyogi KK, Adams WW, Demmig‐Adams B. Genotype-dependent contribution of CBF transcription factors to long-term acclimation to high light and cool temperature. PLANT, CELL & ENVIRONMENT 2022; 45:392-411. [PMID: 34799867 PMCID: PMC9299779 DOI: 10.1111/pce.14231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
When grown under cool temperature, winter annuals upregulate photosynthetic capacity as well as freezing tolerance. Here, the role of three cold-induced C-repeat-binding factor (CBF1-3) transcription factors in photosynthetic upregulation and freezing tolerance was examined in two Arabidopsis thaliana ecotypes originating from Italy (IT) or Sweden (SW), and their corresponding CBF1-3-deficient mutant lines it:cbf123 and sw:cbf123. Photosynthetic, morphological and freezing-tolerance phenotypes, as well as gene expression profiles, were characterized in plants grown from the seedling stage under different combinations of light level and temperature. Under high light and cool (HLC) growth temperature, a greater role of CBF1-3 in IT versus SW was evident from both phenotypic and transcriptomic data, especially with respect to photosynthetic upregulation and freezing tolerance of whole plants. Overall, features of SW were consistent with a different approach to HLC acclimation than seen in IT, and an ability of SW to reach the new homeostasis through the involvement of transcriptional controls other than CBF1-3. These results provide tools and direction for further mechanistic analysis of the transcriptional control of approaches to cold acclimation suitable for either persistence through brief cold spells or for maximisation of productivity in environments with continuous low temperatures.
Collapse
Affiliation(s)
- Christopher R. Baker
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jared J. Stewart
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Cynthia L. Amstutz
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Lindsey G. Ching
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jeffrey D. Johnson
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - William W. Adams
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Barbara Demmig‐Adams
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| |
Collapse
|
7
|
Polutchko SK, Stewart JJ, Adams Iii WW, Demmig-Adams B. Photosynthesis and foliar vascular adjustments to growth light intensity in summer annual species with symplastic and apoplastic phloem loading. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153532. [PMID: 34638004 DOI: 10.1016/j.jplph.2021.153532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Concomitant adjustments in photosynthetic capacity and size, composition, and/or density of minor foliar veins in response to growth environment were previously described primarily for winter annuals that load sugars into foliar phloem apoplastically. Here, common trends, differences associated with phloem-loading mechanism, and species-dependent differences are identified for summer annuals (loading sugars either symplastically [cucumber, pumpkin, and basil] or apoplastically [tomato and sunflower]) that were grown in low and high light. Photosynthetic capacity per leaf area was significantly positively correlated with leaf-level volume of phloem-loading cells (LCs), sugar-export conduits (sieve elements), and water conduits (tracheary elements) irrespective of phloem-loading mechanism. The relative contribution to leaf-level volume of LC numbers versus individual LC size was greater in apoplastic loaders than in symplastic loaders. Species-dependent differences included different vein density within each loading group and either greater or lower numbers of cells per minor vein (especially of tracheary elements in the symplastic loaders basil versus cucumber, respectively), which may be due to genetic adaptation to different environmental conditions. These results indicate considerable plasticity in foliar vascular features in summer annuals as well as some loading-mechanism-dependent trends.
Collapse
Affiliation(s)
- Stephanie K Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - William W Adams Iii
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
8
|
Demmig-Adams B, López-Pozo M, Stewart JJ, Adams WW. Zeaxanthin and Lutein: Photoprotectors, Anti-Inflammatories, and Brain Food. Molecules 2020; 25:molecules25163607. [PMID: 32784397 PMCID: PMC7464891 DOI: 10.3390/molecules25163607] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
This review compares and contrasts the role of carotenoids across the taxa of life—with a focus on the xanthophyll zeaxanthin (and its structural isomer lutein) in plants and humans. Xanthophylls’ multiple protective roles are summarized, with attention to the similarities and differences in the roles of zeaxanthin and lutein in plants versus animals, as well as the role of meso-zeaxanthin in humans. Detail is provided on the unique control of zeaxanthin function in photosynthesis, that results in its limited availability in leafy vegetables and the human diet. The question of an optimal dietary antioxidant supply is evaluated in the context of the dual roles of both oxidants and antioxidants, in all vital functions of living organisms, and the profound impact of individual and environmental context.
Collapse
|
9
|
Stewart JJ, Muller O, Cohu CM, Demmig-Adams B, Adams WW. Quantification of Leaf Phloem Anatomical Features with Microscopy. Methods Mol Biol 2019; 2014:55-72. [PMID: 31197786 DOI: 10.1007/978-1-4939-9562-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Measurements of vein density and foliar minor vein phloem cell numbers, minor vein phloem cell sizes, and transfer cell wall ingrowths provide quantitative proxies for the leaf's capacities to load and export photosynthates. While overall infrastructural capacity for sugar loading and sugar export correlated positively and closely with photosynthetic capacity, the specific targets of the adjustment of minor vein organization varied with phloem-loading mechanism, plant life-cycle characteristics, and environmental growth conditions. Among apoplastic loaders, for which sugar loading into the phloem depends on cell membrane-spanning transport proteins, variation in minor vein density, phloem cell number, and level of cell wall ingrowth (when present) were consistently associated with photosynthetic capacity. Among active symplastic loaders, for which sugar loading into the phloem depends on cytosolic enzymes, variation in vein density and phloem cell size were consistently associated with photosynthetic capacity. All of these anatomical features were also subject to acclimatory adjustment depending on species and environmental conditions, with increased levels of these features supporting higher rates of photosynthesis. We present a procedure for the preparation of leaf tissue for minor vein analysis, using both light and transmission electron microscopy, that facilitates quantification of not only phloem features but also xylem features that provide proxies for foliar water import capacity.
Collapse
Affiliation(s)
- Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Onno Muller
- Institue of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christopher M Cohu
- Department of Environmental Sciences and Technology, Colorado Mesa University, Grand Junction, CO, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
10
|
Optimization of Photosynthetic Productivity in Contrasting Environments by Regulons Controlling Plant Form and Function. Int J Mol Sci 2018; 19:ijms19030872. [PMID: 29543762 PMCID: PMC5877733 DOI: 10.3390/ijms19030872] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
We review the role of a family of transcription factors and their regulons in maintaining high photosynthetic performance across a range of challenging environments with a focus on extreme temperatures and water availability. Specifically, these transcription factors include CBFs (C-repeat binding factors) and DREBs (dehydration-responsive element-binding), with CBF/DREB1 primarily orchestrating cold adaptation and other DREBs serving in heat, drought, and salinity adaptation. The central role of these modulators in plant performance under challenging environments is based on (i) interweaving of these regulators with other key signaling networks (plant hormones and redox signals) as well as (ii) their function in integrating responses across the whole plant, from light-harvesting and sugar-production in the leaf to foliar sugar export and water import and on to the plant's sugar-consuming sinks (growth, storage, and reproduction). The example of Arabidopsisthaliana ecotypes from geographic origins with contrasting climates is used to describe the links between natural genetic variation in CBF transcription factors and the differential acclimation of plant anatomical and functional features needed to support superior photosynthetic performance in contrasting environments. Emphasis is placed on considering different temperature environments (hot versus cold) and light environments (limiting versus high light), on trade-offs between adaptations to contrasting environments, and on plant lines minimizing such trade-offs.
Collapse
|
11
|
Stewart JJ, Polutchko SK, Demmig-Adams B, Adams WW. Arabidopsis thaliana Ei-5: Minor Vein Architecture Adjustment Compensates for Low Vein Density in Support of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:693. [PMID: 29910820 DOI: 10.3389/fpls.2018.00693/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 05/21/2023]
Abstract
An Arabidopsis thaliana accession with naturally low vein density, Eifel-5 (Ei-5), was compared to Columbia-0 (Col-0) with respect to rosette growth, foliar vein architecture, photosynthesis, and transpiration. In addition to having to a lower vein density, Ei-5 grew more slowly, with significantly lower rates of rosette expansion, but had similar capacities for photosynthetic oxygen evolution on a leaf area basis compared to Col-0. The individual foliar minor veins were larger in Ei-5, with a greater number of vascular cells per vein, compared to Col-0. This compensation for low vein density resulted in similar values for the product of vein density × phloem cell number per minor vein in Ei-5 and Col-0, which suggests a similar capacity for foliar sugar export to support similar photosynthetic capacities per unit leaf area. In contrast, the product of vein density × xylem cell number per minor vein was significantly greater in Ei-5 compared to Col-0, and was associated not only with a higher ratio of water-transporting tracheary elements versus sugar-transporting sieve elements but also significantly higher foliar transpiration rates per leaf area in Ei-5. In contrast, previous studies in other systems had reported higher ratios of tracheary to sieve elements and higher transpiration rate to be associated with higher - rather than lower - vein densities. The Ei-5 accession thus further underscores the plasticity of the foliar vasculature by illustrating an example where a higher ratio of tracheary to sieve elements is associated with a lower vein density. Establishment of the Ei-5 accession, with a low vein density but an apparent overcapacity for water flux through the foliar xylem network, may have been facilitated by a higher level of precipitation in its habitat of origin compared to that of the Col-0 accession.
Collapse
Affiliation(s)
- Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Stephanie K Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
12
|
Stewart JJ, Polutchko SK, Demmig-Adams B, Adams WW. Arabidopsis thaliana Ei-5: Minor Vein Architecture Adjustment Compensates for Low Vein Density in Support of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:693. [PMID: 29910820 PMCID: PMC5992485 DOI: 10.3389/fpls.2018.00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 05/05/2023]
Abstract
An Arabidopsis thaliana accession with naturally low vein density, Eifel-5 (Ei-5), was compared to Columbia-0 (Col-0) with respect to rosette growth, foliar vein architecture, photosynthesis, and transpiration. In addition to having to a lower vein density, Ei-5 grew more slowly, with significantly lower rates of rosette expansion, but had similar capacities for photosynthetic oxygen evolution on a leaf area basis compared to Col-0. The individual foliar minor veins were larger in Ei-5, with a greater number of vascular cells per vein, compared to Col-0. This compensation for low vein density resulted in similar values for the product of vein density × phloem cell number per minor vein in Ei-5 and Col-0, which suggests a similar capacity for foliar sugar export to support similar photosynthetic capacities per unit leaf area. In contrast, the product of vein density × xylem cell number per minor vein was significantly greater in Ei-5 compared to Col-0, and was associated not only with a higher ratio of water-transporting tracheary elements versus sugar-transporting sieve elements but also significantly higher foliar transpiration rates per leaf area in Ei-5. In contrast, previous studies in other systems had reported higher ratios of tracheary to sieve elements and higher transpiration rate to be associated with higher - rather than lower - vein densities. The Ei-5 accession thus further underscores the plasticity of the foliar vasculature by illustrating an example where a higher ratio of tracheary to sieve elements is associated with a lower vein density. Establishment of the Ei-5 accession, with a low vein density but an apparent overcapacity for water flux through the foliar xylem network, may have been facilitated by a higher level of precipitation in its habitat of origin compared to that of the Col-0 accession.
Collapse
|
13
|
Stewart JJ, Polutchko SK, Adams WW, Demmig-Adams B. Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity. PHOTOSYNTHESIS RESEARCH 2017; 134:215-229. [PMID: 28861679 DOI: 10.1007/s11120-017-0436-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/22/2017] [Indexed: 05/22/2023]
Abstract
This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO2 uptake under growth conditions with light- and CO2-saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.
Collapse
Affiliation(s)
- Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Stephanie K Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA.
| |
Collapse
|
14
|
Demmig-Adams B, Stewart JJ, Adams WW. Environmental regulation of intrinsic photosynthetic capacity: an integrated view. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:34-41. [PMID: 28410523 DOI: 10.1016/j.pbi.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 05/13/2023]
Abstract
Environmental modulation of photosynthetic capacity is reviewed in the context of its assessment and its regulation, genetic differences among species and ecotypes, and links to plant stress tolerance and productivity. Modulation of intrinsic photosynthetic capacity matches investment in photosynthetic components to opportunity for CO2 uptake and productivity in specific environments, with exceptionally high rates during particularly narrow windows of opportunity. Response varies among species and ecotypes and should be evaluated on multiple reference bases as well as chloroplast, leaf, and whole plant scales. Photosynthetic capacity, total foliar vascular transport capacity, and plant sink strength are modulated in concert. Switching among alternative target sinks and alternative foliar vascular architectures may provide avenues for co-optimization of productivity and stress tolerance.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | - Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| |
Collapse
|