1
|
Xiao Y, Deng S, Huang T, Li Z, Zhang H, Wang K, Akihiro T, Jia C, Lin F, Xu H. Knockout of OsPHT4;4 enhances thiamethoxam accumulation in rice stems for improved brown planthopper control. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109910. [PMID: 40239259 DOI: 10.1016/j.plaphy.2025.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The phosphate transporter PHT4 plays a crucial role in nutrient transport within plants. In addition to this fundamental functions, PHT4 may also participate in the uptake and translocation of other compounds, such as ascorbate. However, only a few studies have characterized the functional roles of PHT4. In this study, we identified and functionally characterized the role of the phosphate transporter OsPHT4;4 in thiamethoxam (THX) uptake and transport in rice. Heterologous expression experiments in yeast and Xenopus laevis oocytes (X. laevis oocytes) demonstrated that OsPHT4;4 significantly enhanced THX accumulation in cells. The OsPHT4; 4 proteins contained 11 transmembrane helices and localized primarily to the plasma membrane (PM) and chloroplast envelope. Knockout of OsPHT4;4 reduced the efficiency of THX translocation from stems to leaves, resulting in significant THX accumulation in the stems, which enhanced control of the brown planthopper (BPH), but had no effect on root-to-stem translocation. In contrast, overexpression of OsPHT4;4 increased THX translocation to the leaves, reduced THX accumulation in the stems, and thereby weakened the pest control effect on BPH. Our results indicate that OsPHT4;4 plays a key role in the specific distribution of THX, contributing to pest management while also affecting plant growth. These findings provide a foundation for optimizing pesticide usage in crop management by balancing pest control effectiveness and plant health.
Collapse
Affiliation(s)
- Yuyan Xiao
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, China
| | - Shuqi Deng
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Tinghong Huang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zepu Li
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Hanlin Zhang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Keyi Wang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Takashi Akihiro
- Faculty of Life and Environmental Science, Shimane University, Shimane, 690-8504, Japan
| | - Chunsheng Jia
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, China
| | - Fei Lin
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zhang N, Hu W, Wu K, Wang K, Miao X, Wang Y, Zhong X, Lin F, Zhang Z, Xu H. The Amino Acid Transporter PtCAT7 and Ammonium Nutrition Enhance the Uptake of Thiamethoxam in Citrus Rootstock Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6942-6953. [PMID: 38506763 DOI: 10.1021/acs.jafc.3c09489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Thiamethoxam (THX), when applied to the soil, can be taken up by citrus roots and subsequently transported to the leaves, providing effective protection of plants against the Asian citrus psyllid (Diaphorina citri Kuwayama). In this study, the field experiments showed that the coapplication of THX and nitrogen fertilizer (AN) did not affect THX uptake in six-year-old citrus plants. However, their coapplication promoted THX uptake in three-year-old Potassium trifoliate rootstocks and relieved the inhibition of AN at a higher level on plant growth characteristics, including biomass and growth of root and stem. RNA-seq analysis found that THX induced upregulation of a cationic amino acid transporter (PtCAT7) in citrus leaves. PtCAT7 facilitated THX uptake in the yeast strain to inhibit its growth, and the PtCAT7 protein was localized on the plasma membrane. Our results demonstrate that THX and N fertilizer can be coapplied and PtCAT7 may be involved in THX uptake in citrus.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Wei Hu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Keer Wu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Kejing Wang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Zhong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Fei Lin
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Xiao Y, Wei X, Hu C, Hsiang T, Yin J, Li J. Multiple amino acid transporters as carriers load L-valine-phenazine-1-carboxylic acid conjugate into Ricinus sieve tubes for the phloem translocation. Int J Biol Macromol 2024; 257:128730. [PMID: 38081490 DOI: 10.1016/j.ijbiomac.2023.128730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Some transporters play important roles in the uptake and acropetal xylem translocation of vectorized agrochemicals. However, it is poorly understood the basipetally phloem-loading functions of transporters toward vectorized agrochemicals. Here, L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate) uptake was demonstrated carrier-mediated. RcAAP2, RcANT7, and RcLHT1 showed a similarly up-regulated expression pattern from 62 transporter coding genes in Ricinus at 1 h after L-Val or L-Val-PCA treatment. Subcellular localization revealed that fusion RcAAP2-eGFP, RcANT7-eGFP and RcLHT1-eGFP proteins were expressed in the plasma membrane of mesophyll and phloem cells. Yeast assays found that RcAAP2, RcANT7, and RcLHT1 facilitated L-Val-PCA uptake. To further demonstrate the phloem-loading functions, using vacuum infiltration strategy, an Agrobacterium-mediated RNA interference (RNAi) protocol was constructed in seedlings. HPLC detection indicated that L-Val-PCA phloem sap concentrations were significantly decreased 54.5 %, 27.6 %, and 41.6 % after silencing for 72 h and increased 48.3 %, 52.6 %, and 52.4 % after overexpression, respectively. In conclusion, the plasma membrane-located RcAAP2, RcANT7, and RcLHT1 can loaded L-Val-PCA into Ricinus sieve tubes for the phloem translocation, which may aid in the utilization of transporters and molecular design of phloem-mobile fungicides target root or vascular pathogens.
Collapse
Affiliation(s)
- Yongxin Xiao
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xuehua Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ciyin Hu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Junkai Li
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
4
|
Guo Y, Xu X, Lin J, Li H, Guo W, Wan S, Chen Z, Xu H, Lin F. The herbicide bensulfuron-methyl inhibits rice seedling development by blocking calcium ion flux in the OsCNGC12 channel. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1218-1233. [PMID: 37574927 DOI: 10.1111/tpj.16418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
Identification of translocator protein-related genes involved in bensulfuron-methyl (BSM) uptake and transport in rice could facilitate the development of herbicide-tolerant cultivars by inactivating them. This study found that the OsCNGC12 mutants not only reduced BSM uptake but also compromised the Ca2 ⁺ efflux caused by BSM in the roots, regulating dynamic equilibrium of Ca2 ⁺ inside the cell and conferring non-target-site tolerance to BSM.
Collapse
Affiliation(s)
- Yating Guo
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Xu
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Jinbei Lin
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Haiqing Li
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Weikang Guo
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqing Wan
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zepeng Chen
- China National Tobacco Corporation Guangdong Branch, Guangzhou, 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Fei Lin
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Xiao Y, Hu C, Hsiang T, Li J. Amino acid permease RcAAP1 increases the uptake and phloem translocation of an L-valine-phenazine-1-carboxylic acid conjugate. FRONTIERS IN PLANT SCIENCE 2023; 14:1191250. [PMID: 37332709 PMCID: PMC10272580 DOI: 10.3389/fpls.2023.1191250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Amino acid conjugates of pesticides can promote the phloem translocation of parent ingredients, allowing for the reduction of usage, and decreased environmental pollution. Plant transporters play important roles in the uptake and phloem translocation of such amino acid-pesticide conjugates such as L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate). However, the effects of an amino acid permease, RcAAP1, on the uptake and phloem mobility of L-Val-PCA are still unclear. Here, the relative expression levels of RcAAP1 were found to be up-regulated 2.7-fold and 2.2-fold by the qRT-PCR after L-Val-PCA treatments of Ricinus cotyledons for 1 h and 3 h, respectively. Subsequently, expression of RcAAP1 in yeast cells increased the L-Val-PCA uptake (0.36 μmol/107 cells), which was 2.1-fold higher than the control (0.17 μmol/107 cells). Pfam analysis suggested RcAAP1 with its 11 transmembrane domains belongs to the amino acid transporter family. Phylogenetic analysis found RcAAP1 to be strongly similar to AAP3 in nine other species. Subcellular localization showed that fusion RcAAP1-eGFP proteins were observed in the plasma membrane of mesophyll cells and phloem cells. Furthermore, overexpression of RcAAP1 for 72 h significantly increased the phloem mobility of L-Val-PCA in Ricinus seedlings, and phloem sap concentration of the conjugate was 1.8-fold higher than the control. Our study suggested that RcAAP1 as carrier was involved in the uptake and phloem translocation of L-Val-PCA, which could lay foundation for the utilization of amino acids and further development of vectorized agrochemicals.
Collapse
Affiliation(s)
- Yongxin Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
| | - Ciyin Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Junkai Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Hao X, Mo Y, Ji W, Yang X, Xie Z, Huang D, Li D, Tian L. The OsNramp4 aluminum transporter is involved in cadmium accumulation in rice grains. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
7
|
Xiao Y, Zhang H, Li Z, Huang T, Akihiro T, Xu J, Xu H, Lin F. An amino acid transporter-like protein (OsATL15) facilitates the systematic distribution of thiamethoxam in rice for controlling the brown planthopper. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1888-1901. [PMID: 35678495 PMCID: PMC9491460 DOI: 10.1111/pbi.13869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Characterization and genetic engineering of plant transporters involved in the pesticide uptake and translocation facilitate pesticide relocation to the tissue where the pests feed, thus improving the bioavailability of the agrichemicals. We aimed to identify thiamethoxam (THX) transporters in rice and modify their expression for better brown planthopper (BPH) control with less pesticide application. A yeast library expressing 1385 rice transporters was screened, leading to the identification of an amino acid transporter-like (ATL) gene, namely OsATL15, which facilitates THX uptake in both yeast cells and rice seedlings. In contrast to a decrease in THX content in osatl15 knockout mutants, ectopic expression of OsATL15 under the control of the CaMV 35S promoter or a vascular-bundle-specific promoter gdcsPpro significantly increased THX accumulation in rice plants, thus further enhancing the THX efficacy against BPH. OsATL15 was localized in rice cell membrane and abundant in the root transverse sections, vascular bundles of leaf blade, and stem longitudinal sections, but not in hull and brown rice at filling stages. Our study shows that OsATL15 plays an essential role in THX uptake and its systemic distribution in rice. OsATL15 could be valuable in achieving precise pest control by biotechnology approaches.
Collapse
Affiliation(s)
- Yuyan Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Hanlin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Zhiwei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Tinghong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Takashi Akihiro
- Faculty of Life and Environmental ScienceShimane UniversityShimaneJapan
| | - Jian Xu
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| |
Collapse
|
8
|
Ashraf MA, Akihiro T, Ito K, Kumagai S, Sugita R, Tanoi K, Rahman A. ATP binding cassette proteins ABCG37 and ABCG33 function as potassium-independent cesium uptake carriers in Arabidopsis roots. MOLECULAR PLANT 2021; 14:664-678. [PMID: 33588076 DOI: 10.1016/j.molp.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/29/2020] [Accepted: 02/03/2021] [Indexed: 05/27/2023]
Abstract
Radiocesium accumulated in the soil by nuclear accidents is a major environmental concern. The transport process of cesium (Cs+) is tightly linked to the indispensable plant nutrient potassium (K+) as they both belong to the group I alkali metals with similar chemical properties. Most of the transporters that had been characterized to date as Cs+ transporters are directly or indirectly linked to K+. Using a combinatorial approach of physiology, genetics, cell biology, and root uptake assay, here we identified two ATP-binding cassette (ABC) proteins, ABCG37 and ABCG33, as facilitators of Cs+ influx. A gain-of-function mutant of ABCG37 (abcg37-1) showed increased sensitivity to Cs+-induced root growth inhibition, while the double knockout mutant of ABCG33 and ABCG37 (abcg33-1abcg37-2) showed resistance, whereas the single loss-of-function mutants of ABCG33 and ABCG37 did not show any alteration in Cs+ response. In planta short-term radioactive Cs+-uptake assay along with growth and uptake assays in a heterologous system confirmed ABCG33 and ABCG37 as Cs+-uptake carriers. Potassium response and content were unaffected in the double-mutant background and yeast cells lacking potassium-uptake carriers transformed with ABCG33 and ABCG37 failed to grow in the absence of K+, confirming that Cs+ uptake by ABCG33 and ABCG37 is independent of K+. Collectively, this work identified two ABC proteins as new Cs+-influx carriers that act redundantly and independent of the K+-uptake pathway.
Collapse
Affiliation(s)
- Mohammad Arif Ashraf
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Takashi Akihiro
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Keita Ito
- Faculty of Agriculture, Department of Plant Bio Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Sayaka Kumagai
- Faculty of Agriculture, Department of Plant Bio Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Ryohei Sugita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Faculty of Agriculture, Department of Plant Bio Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Agri-Innovation, Iwate University, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
9
|
Nieves-Cordones M, Rubio F. The quest for selective Cs + transport in plants. MOLECULAR PLANT 2021; 14:552-554. [PMID: 33684541 DOI: 10.1016/j.molp.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Campus de Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
10
|
Wu B, Chen Z, Xu X, Chen R, Wang S, Xu H, Lin F. Harnessing a Transient Gene Expression System in Nicotiana benthamiana to Explore Plant Agrochemical Transporters. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030524. [PMID: 33799776 PMCID: PMC7998108 DOI: 10.3390/plants10030524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 05/20/2023]
Abstract
Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.
Collapse
Affiliation(s)
- Bingqi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
| | - Zhiting Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Xiaohui Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
| | - Ronghua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
| | - Siwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
- Correspondence: (H.X.); (F.L.); Tel.: +86-20-8528-5127 (H.X. & F.L.)
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.X.); (F.L.); Tel.: +86-20-8528-5127 (H.X. & F.L.)
| |
Collapse
|
11
|
Yang X, Zhang J, Wu A, Wei H, Fu X, Tian M, Ma L, Lu J, Wang H, Yu S. Genome-Wide Identification and Expression Pattern Analysis of the HAK/KUP/KT Gene Family of Cotton in Fiber Development and Under Stresses. Front Genet 2020; 11:566469. [PMID: 33329704 PMCID: PMC7710864 DOI: 10.3389/fgene.2020.566469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
The potassium transporter family HAK/KUP/KT is a large group of proteins that are important in plant potassium transport and plays a crucial role in plant growth and development, especially in economic crops. Although HAK/KUP/KT genes have been identified in many species, research on these genes in cotton is still quite rare. In this study, in total, 21, 24, 45, and 44 HAK/KUP/KT genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Phylogenetic analysis showed that these genes were divided into four clusters. The G. hirsutum gene promoters contained diverse cis-regulatory elements, such as drought-responsive elements, low temperature-responsive elements, and other elements. The RNA-seq data and qRT-PCR results showed that HAK/KUP/KT genes had different expression patterns in fiber development. The qRT-PCR results of drought and NaCl treatment indicated that HAK/KUP/KT genes might play important roles in abiotic stress responses. These results will provide molecular insights into potassium transporter research in cotton.
Collapse
Affiliation(s)
- Xu Yang
- School of Agronomy Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Miaomiao Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| |
Collapse
|
12
|
Belykh ES, Maystrenko TA, Velegzhaninov IO. Recent Trends in Enhancing the Resistance of Cultivated Plants to Heavy Metal Stress by Transgenesis and Transcriptional Programming. Mol Biotechnol 2019; 61:725-741. [DOI: 10.1007/s12033-019-00202-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Ródenas R, Nieves-Cordones M, Rivero RM, Martinez V, Rubio F. Pharmacological and gene regulation properties point to the SlHAK5 K + transporter as a system for high-affinity Cs + uptake in tomato plants. PHYSIOLOGIA PLANTARUM 2018; 162:455-466. [PMID: 29055027 DOI: 10.1111/ppl.12652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 05/27/2023]
Abstract
Potassium (K+ ) and cesium (Cs+ ) are chemically similar but while K+ is an essential nutrient, Cs+ can be toxic for living organisms, plants included. Two different situations could lead to problems derived from the presence of Cs+ in agricultural systems: (1) presence of Cs+ at high concentrations that could produce toxic effects on plants, (2) presence of micromolar concentrations of radiocesium, which can be accumulated in the plant and affect animal and human health through the food chain. While K+ uptake has been well described in tomato plants, information on molecular mechanisms involved in Cs+ accumulation in this species is absent. Here, we show that in tomato plants, high concentrations of Cs+ produce deficiency of K+ but do not induce high-affinity K+ uptake or the gene encoding the high-affinity K+ transporter SlHAK5. At these concentrations, Cs+ uptake takes place through a Ca2+ -sensitive pathway, probably a non-selective cation channel. At micromolar concentrations, Cs+ is accumulated by a high-affinity uptake system upregulated in K+ -starved plants. This high-affinity Cs+ uptake shares features with high-affinity K+ uptake. It is sensitive to NH4+ and insensitive to Ba2+ and Ca2+ and its presence parallels the pattern of SlHAK5 expression. Moreover, blockers of reactive oxygen species and ethylene action repress SlHAK5 and negatively regulate both high-affinity K+ and Cs+ uptake. Thus, we propose that SlHAK5 contributes to Cs+ uptake from micromolar concentrations in tomato plants and can constitute a pathway for radiocesium transfer from contaminated areas to the food chain.
Collapse
Affiliation(s)
- Reyes Ródenas
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100, Murcia, Spain
| | | | - Rosa M Rivero
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100, Murcia, Spain
| | - Vicente Martinez
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100, Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100, Murcia, Spain
| |
Collapse
|