1
|
Shi JJ, Cao Y, Lang QH, Dong Y, Huang LY, Yang LJ, Li JJ, Zhang XX, Wang DY. The effect of the nucleotides immediately upstream of the AUG start codon on the efficiency of translation initiation in sperm cells. PLANT REPRODUCTION 2022; 35:221-231. [PMID: 35674836 DOI: 10.1007/s00497-022-00442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
It is widely known that an optimal nucleotide sequence context immediately upstream of the AUG start codon greatly improves the efficiency of translation initiation of mRNA in mammalian and plant somatic cells, which in turn increases protein levels. However, it is still unclear whether a similar regulatory mechanism is also present in highly differentiated cells. Here, we surveyed this issue in Arabidopsis thaliana sperm cells and found that the sequence context-mediated regulation of translation initiation in sperm cells is generally similar to that in somatic cells. A simple motif of four adenine nucleotides at positions - 1 to - 4 greatly improved the efficiency of translation initiation, and when the motif was present there, translation was even initiated at some non-AUG codons in sperm cells. However, unlike that in mammalian cells, a mainly effective nucleotide site to regulate the efficiency of translation initiation was not present at positions - 1 to - 4 in sperm cells. Meanwhile, different from somatic cells, sperm cells did not use eukaryotic translation initiation factor 1 to regulate the efficiency in a poor context consisting of the lowest frequency nucleotides. All these results contribute to our understanding of the cytoplasmic event of translation initiation in highly differentiated sperm cells.
Collapse
Affiliation(s)
- Jiao-Jiao Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yuan Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Qiu-Hua Lang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yao Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Liu-Yuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Liu-Jie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jing-Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xue-Xin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Dan-Yang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Fan H, Huang LY, Tong X, Yang LJ, Shi JJ, Jiao J, Xu HQ, Li YC, Wang DY. A competitive PCR-based method to detect a single copy of T-DNA insertion in transformants. PHYSIOLOGIA PLANTARUM 2021; 173:1179-1188. [PMID: 34310717 DOI: 10.1111/ppl.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Gene function studies benefit from the availability of mutants. In plants, Agrobacterium-mediated genetic transformation is widely used to create mutants. These mutants, also called transformants, contain one or several transfer-DNA (T-DNA) copies in the host genome. Quantifying the copy number of T-DNA in transformants is beneficial to assess the number of mutated genes. Here, we developed a competitive polymerase chain reaction (PCR)-based method to detect a single copy of a T-DNA insertion in transformants. The competitor line BHK- -1 that contains a single copy of competitor BHK- (BHK, Basta, Hygromycin, Kanamycin-resistant genes) was crossed with test transformants and the genomic DNA of F1 plants was subjected to competitive PCR. By analyzing the gray ratio between two PCR products, we were able to determine whether or not the test transformants contained a single copy of T-DNA insertion. We also generated the control lines BHK±1:1 and BHK±2:1 , which contain the target (BHK+ ) and competitor (BHK- ) in a ratio of 1:1 and 2:1, respectively. The ratios of their PCR products are useful references for quantitative analysis. Overall, this method is reliable and simple in experimental manipulations and can be used as a substitute for Southern-blot analysis to identify a single copy of T-DNA insertion in transformants.
Collapse
Affiliation(s)
| | - Liu-Yuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Xin Tong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Liu-Jie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Jiao-Jiao Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Jiao Jiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Hua-Quan Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Ying-Chao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Dan-Yang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
3
|
Li WF, Kang Y, Zhang Y, Zang QL, Qi LW. Concerted control of the LaRAV1-LaCDKB1;3 module by temperature during dormancy release and reactivation of larch. TREE PHYSIOLOGY 2021; 41:1918-1937. [PMID: 33847364 PMCID: PMC8498939 DOI: 10.1093/treephys/tpab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Dormancy release and reactivation of temperate-zone trees involve the temperature-modulated expression of cell-cycle genes. However, information on the detailed regulatory mechanism is limited. Here, we compared the transcriptomes of the stems of active and dormant larch trees, emphasizing the expression patterns of cell-cycle genes and transcription factors and assessed their relationships and responses to temperatures. Twelve cell-cycle genes and 31 transcription factors were strongly expressed in the active stage. Promoter analysis suggested that these 12 genes might be regulated by transcription factors from 10 families. Altogether, 73 cases of regulation between 16 transcription factors and 12 cell-cycle genes were predicted, while the regulatory interactions between LaMYB20 and LaCYCB1;1, and LaRAV1 and LaCDKB1;3 were confirmed by yeast one-hybrid and dual-luciferase assays. Last, we found that LaRAV1 and LaCDKB1;3 had almost the same expression patterns during dormancy release and reactivation induced naturally or artificially by temperature, indicating that the LaRAV1-LaCDKB1;3 module functions in the temperature-modulated dormancy release and reactivation of larch trees. These results provide new insights into the link between temperature and cell-cycle gene expression, helping to understand the temperature control of tree growth and development in the context of climate change.
Collapse
Affiliation(s)
- Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yanhui Kang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Qiao-Lu Zang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Li-Wang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| |
Collapse
|