1
|
Mom R, Mocquet V, Auguin D, Réty S. Aquaporin Modulation by Cations, a Review. Curr Issues Mol Biol 2024; 46:7955-7975. [PMID: 39194687 DOI: 10.3390/cimb46080470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes' water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function.
Collapse
Affiliation(s)
- Robin Mom
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Vincent Mocquet
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement (P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, F-45067 Orléans, France
| | - Stéphane Réty
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| |
Collapse
|
2
|
Zaghdoud C, Yahia Y, Nagaz K, Martinez-Ballesta MDC. Foliar spraying of zinc oxide nanoparticles improves water transport and nitrogen metabolism in tomato (Solanum lycopersicum L.) seedlings mitigating the negative impacts of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37428-37443. [PMID: 38777976 DOI: 10.1007/s11356-024-33738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The use of bio-nanotechnology in agriculture-such as the biological applications of metal oxide nanoparticles (NPs)-greatly improves crop yield and quality under different abiotic stress factors including soil metal contamination. Here, we explore the effectiveness of zinc oxide (ZnO)-NPs (0, 50 mg/L) foliar spraying to ameliorate the detrimental effects of cadmium (Cd) on the water transport and nitrogen metabolism in tomato (Solanum lycopersicum Mill. cv. Chibli F1) plants grown on a Cd-supplied (CdCl2; 0, 10, 40 μM) Hoagland nutrient solution. The results depicted that the individually studied factors (ZnO-NPs and Cd) had a significant impact on all the physiological parameters analyzed. Independently to the Cd concentration, ZnO-NPs-sprayed plants showed significantly higher dry weight (DW) in both leaves and roots compared to the non-sprayed ones, which was in consonance with higher and lower levels of Zn2+ and Cd2+ ions, respectively, in these organs. Interestingly, ZnO-NPs spraying improved water status in all Cd-treated plants as evidenced by the increase in root hydraulic conductance (L0), apoplastic water pathway percentage, and leaf and root relative water content (RWC), compared to the non-sprayed plants. This improved water balance was associated with a significant accumulation of osmoprotectant osmolytes, such as proline and soluble sugars in the plant organs, reducing electrolyte leakage (EL), and osmotic potential (ψπ). Also, ZnO-NPs spraying significantly improved NO3- and NH4+ assimilation in the leaf and root tissues of all Cd-treated plants, leading to a reduction in NH4+ toxicity. Our findings point out new insights into how ZnO-NPs affect water transport and nitrogen metabolism in Cd-stressed plants and support their use to improve crop resilience against Cd-contaminated soils.
Collapse
Affiliation(s)
- Chokri Zaghdoud
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia.
- Technology Transfer Office (TTO), University of Gafsa, 2112, Gafsa, Tunisia.
| | - Yassine Yahia
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Kamel Nagaz
- Dry Land Farming and Oasis Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Maria Del Carmen Martinez-Ballesta
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203, Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202, Cartagena, Spain
| |
Collapse
|
3
|
Martinez-Alonso A, Nicolás-Espinosa J, Carvajal M, Bárzana G. The differential expressions of aquaporins underline the diverse strategies of cucumber and tomato against salinity and zinc stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14222. [PMID: 38380715 DOI: 10.1111/ppl.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
Salinity and excess zinc are two main problems that have limited agriculture in recent years. Aquaporins are crucial in regulating the passage of water and solutes through cells and may be essential for mitigating abiotic stresses. In the present study, the adaptive response to moderate salinity (60 mM NaCl) and excess Zn (1 mM ZnSO4 ) were compared alone and in combination in Cucumis sativus L. and Solanum lycopersicum L. Water relations, gas exchange and the differential expression of all aquaporins were analysed. The results showed that cucumber plants under salinity maintained the internal movement of water through osmotic adjustment and the overexpression of specific PIPs aquaporins, following a "conservation strategy". As tomato has a high tolerance to salinity, the physiological parameters and the expression of most aquaporins remained unchanged. ZnSO4 was shown to be stressful for both plant species. While cucumber upregulated 7 aquaporin isoforms, the expression of aquaporins increased in a generalized manner in tomato. Despite the differences, water relations and transpiration were adjusted in both plants, allowing the RWC in the shoot to be maintained. The aquaporin regulation in cucumber plants facing NaCl+ZnSO4 stress was similar in the two treatments containing NaCl, evidencing the predominance of salt in stress. However, in tomato, the induced expression of specific isoforms to deal with the combined stress differed from independent stresses. The results clarify the key role of aquaporin regulation in facing abiotic stresses and their possible use as markers of tolerance to salinity and heavy metals in plants.
Collapse
Affiliation(s)
- Alberto Martinez-Alonso
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Murcia, Spain
| | - Juan Nicolás-Espinosa
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Murcia, Spain
| | - Gloria Bárzana
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Murcia, Spain
| |
Collapse
|
4
|
Lu Y, Fricke W. Diurnal changes in apoplast bypass flow of water and ions in salt-stressed wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). PHYSIOLOGIA PLANTARUM 2023; 175:e13955. [PMID: 37323067 DOI: 10.1111/ppl.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The aim of the present study was to quantify the contribution of apoplastic bypass flow to the uptake of water and salt across the root cylinder of wheat and barley during day and night. Plants were grown on hydroponics until they were 14-17 days old and then analysed over a single day (16 h) or night (8 h) period while being exposed to different concentrations of NaCl (50, 100, 150 and 200 mM NaCl). Exposure to salt started just before the experiment (short-term stress) or had started 6d before (longer-term stress). Bypass flow was quantified using the apoplastic tracer dye 8-hydroxy-1,3,6-pyrenesulphonic acid (PTS). The percent contribution of bypass flow to root water uptake increased in response to salt stress and during the night and amounted to up to 4.4%. Bypass flow across the root cylinder of Na+ and Cl- made up 2%-12% of the net delivery of these ions to the shoot; this percentage changed little (wheat) or decreased (barley) during the night. Changes in the contribution of bypass flow to the net uptake of water, Na+ and Cl- in response to salt stress and day/night are the combined result of changes in xylem tension, the contribution of alternative cell-to-cell flow path and the requirement to generate xylem osmotic pressure.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
5
|
Gao T, Wang H, Li C, Zuo M, Wang X, Liu Y, Yang Y, Xu D, Liu Y, Fang X. Effects of Heavy Metal Stress on Physiology, Hydraulics, and Anatomy of Three Desert Plants in the Jinchang Mining Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15873. [PMID: 36497949 PMCID: PMC9738440 DOI: 10.3390/ijerph192315873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The physiological mechanisms and phytoremediation effects of three kinds of native quinoa in a desert mining area were studied. We used two different types of local soils (native soil and tailing soil) to analyze the changes in the heavy metal content, leaf physiology, photosynthetic parameters, stem hydraulics, and anatomical characteristics of potted quinoa. The results show that the chlorophyll content, photosynthetic rate, stomatal conductance, and transpiration rate of Kochia scoparia were decreased, but intercellular CO2 concentration (Ci) was increased under heavy metal stress, and the net photosynthetic rate (Pn) was decreased due to non-stomatal limitation. The gas exchange of Chenopodium glaucum and Atriplex centralasiatica showed a decrease in Pn, stomatal conductance (Gs), and transpiration rate (E) due to stomatal limitation. The three species showed a similar change in heavy metal content; they all showed elevated hydraulic parameters, decreased vessel density, and significantly thickened vessel walls under heavy metal stress. Physiological indicators such as proline content and activity of superoxide dismutase (SOD) and peroxidase (POD) increased, but the content of malondialdehyde (MDA) and glutathione (GSH), as well as catalase (CAT) activity, decreased in these three plants. Therefore, it can be concluded that these three species of quinoa, possibly the most dominant 30 desert plants in the region, showed a good adaptability and accumulation capacity under the pressure of heavy metal stress, and these plants can be good candidates for tailings remediation in the Jinchang desert mining area.
Collapse
Affiliation(s)
- Tianpeng Gao
- School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou 730070, China
| | - Haoming Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Changming Li
- School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China
| | - Mingbo Zuo
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xueying Wang
- Institute of Environmental Health Science in Xi’an, Xi’an 710065, China
| | - Yuan Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yingli Yang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Danghui Xu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yubing Liu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiangwen Fang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Identification of Aquaporin Gene Family in Response to Natural Cold Stress in Ligustrum × vicaryi Rehd. FORESTS 2022. [DOI: 10.3390/f13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants are susceptible to a variety of abiotic stresses during the growing period, among which low temperature is one of the more frequent stress factors. Maintaining water balance under cold stress is a difficult and critical challenge for plants. Studies have shown that aquaporins located on the cytomembrane play an important role in controlling water homeostasis under cold stress, and are involved in the tolerance mechanism of plant cells to cold stress. In addition, the aquaporin gene family is closely related to the cold resistance of plants. As a major greening tree species in urban landscaping, Ligustrum× vicaryi Rehd. is more likely to be harmed by low temperature after a harsh winter and a spring with fluctuating temperatures. Screening the target aquaporin genes of Ligustrum × vicaryi responding to cold resistance under natural cold stress will provide a scientific theoretical basis for cold resistance breeding of Ligustrum × vicaryi. In this study, the genome-wide identification of the aquaporin gene family was performed at four different overwintering periods in September, November, January and April, and finally, 58 candidate Ligustrum × vicaryi aquaporin (LvAQP) genes were identified. The phylogenetic analysis revealed four subfamilies of the LvAQP gene family: 32 PIPs, 11 TIPs, 11 NIPs and 4 SIPs. The number of genes in PIPs subfamily was more than that in other plants. Through the analysis of aquaporin genes related to cold stress in other plants and LvAQP gene expression patterns identified 20 LvAQP genes in response to cold stress, and most of them belonged to the PIPs subfamily. The significantly upregulated LvAQP gene was Cluster-9981.114831, and the significantly downregulated LvAQP genes were Cluster-9981.112839, Cluster-9981.107281, and Cluster-9981.112777. These genes might play a key role in responding to cold tolerance in the natural low-temperature growth stage of Ligustrum × vicaryi.
Collapse
|
7
|
Mahajan P, Sharma P, Singh HP, Rathee S, Sharma M, Batish DR, Kohli RK. Amelioration potential of β-pinene on Cr(VI)-induced toxicity on morphology, physiology and ultrastructure of maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62431-62443. [PMID: 34212330 DOI: 10.1007/s11356-021-15018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals' amassment in the soil environment is a threat to crop and agricultural sustainability and consequentially the global food security. For achieving enhancement of crop productivity in parallel to reducing chromium (Cr) load onto food chain demands continuous investigation and efforts to develop cost-effective strategies for maximizing crop yield and quality. In this context, we investigated the amelioration of Cr(VI) toxicity through β-pinene in experimental dome simulating natural field conditions. The protective role of β-pinene was determined on physiology, morphology and ultrastructure in Zea mays under Cr(VI) stress (250 and 500 μM). Results exhibited a marked reduction in the overall growth (shoot and root length and dry matter) of Z. mays plants subjected to Cr(VI) stress. Photosynthetic pigments (chlorophyll and carotenoids) were evidently reduced, and there was a loss of membrane integrity. Supplementation of β-pinene (100 μM), however, declined the toxicity induced by Cr(VI). Interestingly, Cr-tolerant abilities were improved in relation to plant growth, photosynthetic pigments and membrane integrity with the combined treatment of Cr(VI) and β-pinene. β-Pinene also reduced the root-mediated uptake of Cr(VI) and translocation to shoots. Moreover, significant ultrastructural damages recorded in roots and shoots under Cr(VI) stress were partially reverted upon addition of β-pinene. Our analyses revealed that β-pinene mitigates Cr(VI) toxicity in Z. mays, either by membrane stabilization or serving as a barrier to the uptake of Cr from soil. Thus, exogenous supply of β-pinene can be an effective alternative to mitigate Cr toxicity in soil. However, it is deemed essential to investigate further the responses throughout the life cycle of the plant on β-pinene supplementation under natural conditions.
Collapse
Affiliation(s)
- Priyanka Mahajan
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Daizy Rani Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | | |
Collapse
|
8
|
Zuo S, Hu S, Rao J, Dong Q, Wang Z. Zinc promotes cadmium leaf excretion and translocation in tall fescue (Festuca arundinacea). CHEMOSPHERE 2021; 276:130186. [PMID: 33725620 DOI: 10.1016/j.chemosphere.2021.130186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Phytoexcretion is a novel strategy to remediate cadmium (Cd) pollution by leaf excretion in tall fescue (Festuca arundinacea), which involves the processes of Cd leaf excretion, root-to-leaf translocation, and root uptake. A hydroponic experiment was designed to investigate a series of 11 zinc (Zn) concentrations on Cd leaf excretion in tall fescue under 75 μM Cd stress. The results showed that the promotions of Zn on Cd leaf excretion, root-to-leaf translocation, and leaf accumulation were concentration-dependent in tall fescue. Zn treatments at 90 and 135 μM resulted in the highest Cd leaf excretion with 118.1 and 123.6 mg/kg of Cd excretion amount and 27.0 and 26.6% of excretion ratio, which were 2.6 and 2.7 fold of the control (15 μM of Zn), respectively. Cd leaf excretion was decreased when Zn treatments reached 180 μM, which could be toxic to plants as indicated by the decline of plant biomass. Zn also promoted leaf Cd accumulation and Cd translocation from roots to leaves and reached the highest at 90 and 180 μM respectively. Root Cd accumulation decreased with the increase of Zn concentrations, but the total plant Cd uptake did not decrease significantly until Zn concentration reached 90 μM. Our results indicate that 90 μM of Zn treatment can be served as the threshold to promote Cd leaf excretion and improve the efficiency of Cd phytoexcretion in tall fescue.
Collapse
Affiliation(s)
- ShaoFan Zuo
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - Shuai Hu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - JinLiang Rao
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - Qin Dong
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - ZhaoLong Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China.
| |
Collapse
|
9
|
Abstract
This review highlights the most recent updated information available about Zn phytotoxicity at physiological, biochemical and molecular levels, uptake mechanisms as well as excess Zn homeostasis in plants. Zinc (Zn) is a natural component of soil in terrestrial environments and is a vital element for plant growth, as it performs imperative functions in numerous metabolic pathways. However, potentially noxious levels of Zn in soils can result in various alterations in plants like reduced growth, photosynthetic and respiratory rate, imbalanced mineral nutrition and enhanced generation of reactive oxygen species. Zn enters into soils through various sources, such as weathering of rocks, forest fires, volcanoes, mining and smelting activities, manure, sewage sludge and phosphatic fertilizers. The rising alarm in environmental facet, as well as, the narrow gap between Zn essentiality and toxicity in plants has drawn the attention of the scientific community to its effects on plants and crucial role in agricultural sustainability. Hence, this review focuses on the most recent updates about various physiological and biochemical functions perturbed by high levels of Zn, its mechanisms of uptake and transport as well as molecular aspects of surplus Zn homeostasis in plants. Moreover, this review attempts to understand the mechanisms of Zn toxicity in plants and to present novel perspectives intended to drive future investigations on the topic. The findings will further throw light on various mechanisms adopted by plants to cope with Zn stress which will be of great significance to breeders for enhancing tolerance to Zn contamination.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, Akal University, Bathinda, 151302, Punjab, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Vitali V, Sutka M, Ojeda L, Aroca R, Amodeo G. Root hydraulics adjustment is governed by a dominant cell-to-cell pathway in Beta vulgaris seedlings exposed to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110873. [PMID: 33775369 DOI: 10.1016/j.plantsci.2021.110873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Soil salinity reduces root hydraulic conductivity (Lpr) of several plant species. However, how cellular signaling and root hydraulic properties are linked in plants that can cope with water restriction remains unclear. In this work, we exposed the halotolerant species red beet (Beta vulgaris) to increasing concentrations of NaCl to determine the components that might be critical to sustaining the capacity to adjust root hydraulics. Our strategy was to use both hydraulic and cellular approaches in hydroponically grown seedlings during the first osmotic phase of salt stress. Interestingly, Lpr presented a bimodal profile response apart from the magnitude of the imposed salt stress. As well as Lpr, the PIP2-aquaporin profile follows an unphosphorylated/phosphorylated pattern when increasing NaCl concentration while PIP1 aquaporins remain constant. Lpr also shows high sensitivity to cycloheximide. In low NaCl concentrations, Lpr was high and 70 % of its capacity could be attributed to the CHX-inhibited cell-to-cell pathway. More interestingly, roots can maintain a constant spontaneous exudated flow that is independent of the applied NaCl concentration. In conclusion, Beta vulgaris root hydraulic adjustment completely lies in a dominant cell-to-cell pathway that contributes to satisfying plant water demands.
Collapse
Affiliation(s)
- Victoria Vitali
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Lucas Ojeda
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Vats S, Sudhakaran S, Bhardwaj A, Mandlik R, Sharma Y, Kumar S, Tripathi DK, Sonah H, Sharma TR, Deshmukh R. Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124910. [PMID: 33453583 DOI: 10.1016/j.jhazmat.2020.124910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Uptake of hazardous metal(loid)s adversely affects plants and imposes a threat to the entire food chain. Here, the role of aquaporins (AQPs) providing tolerance against hazardous metal(loid)s in plants is discussed to provide a perspective on the present understanding, knowledge gaps, and opportunities. Plants adopt complex molecular and physiological mechanisms for better tolerance, adaptability, and survival under metal(loid)s stress. Water conservation in plants is one such primary strategies regulated by AQPs, a family of channel-forming proteins facilitating the transport of water and many other solutes. The strategy is more evident with reports suggesting differential expression of AQPs adopted by plants to cope with the heavy metal stress. In this regard, numerous studies showing enhanced tolerance against hazardous elements in plants due to AQPs activity are discussed. Consequently, present understanding of various aspects of AQPs, such as tertiary-structure, transport activity, solute-specificity, differential expression, gating mechanism, and subcellular localization, are reviewed. Similarly, various tools and techniques are discussed in detail aiming at efficient utilization of resources and knowledge to combat metal(loid)s stress. The scope of AQP transgenesis focusing on heavy metal stresses is also highlighted. The information provided here will be helpful to design efficient strategies for the development of metal(loid)s stress-tolerant crops.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sreeja Sudhakaran
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Anupriya Bhardwaj
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|
12
|
Barzana G, Rios JJ, Lopez-Zaplana A, Nicolas-Espinosa J, Yepes-Molina L, Garcia-Ibañez P, Carvajal M. Interrelations of nutrient and water transporters in plants under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 171:595-619. [PMID: 32909634 DOI: 10.1111/ppl.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/12/2023]
Abstract
Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.
Collapse
Affiliation(s)
- Gloria Barzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan J Rios
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Alvaro Lopez-Zaplana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| |
Collapse
|
13
|
Kurowska MM. Aquaporins in Cereals-Important Players in Maintaining Cell Homeostasis under Abiotic Stress. Genes (Basel) 2021; 12:genes12040477. [PMID: 33806192 PMCID: PMC8066221 DOI: 10.3390/genes12040477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Cereal productivity is reduced by environmental stresses such as drought, heat, elevated CO2, salinity, metal toxicity and cold. Sometimes, plants are exposed to multiple stresses simultaneously. Plants must be able to make a rapid and adequate response to these environmental stimuli in order to restore their growing ability. The latest research has shown that aquaporins are important players in maintaining cell homeostasis under abiotic stress. Aquaporins are membrane intrinsic proteins (MIP) that form pores in the cellular membranes, which facilitate the movement of water and many other molecules such as ammonia, urea, CO2, micronutrients (silicon and boron), glycerol and reactive oxygen species (hydrogen peroxide) across the cell and intercellular compartments. The present review primarily focuses on the diversity of aquaporins in cereal species, their cellular and subcellular localisation, their expression and their functioning under abiotic stresses. Lastly, this review discusses the potential use of mutants and plants that overexpress the aquaporin-encoding genes to improve their tolerance to abiotic stress.
Collapse
Affiliation(s)
- Marzena Małgorzata Kurowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
14
|
Burke S, Sadaune E, Rognon L, Fontana A, Jourdrin M, Fricke W. A redundant hydraulic function of root hairs in barley plants grown in hydroponics. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:448-459. [PMID: 33347805 DOI: 10.1071/fp20287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The root hair-less brb of Hordeum vulgare L. (bald root barley) mutant was used to assess the significance that root hairs have for the hydraulic properties of roots and response to a limited supply of mineral nutrients in plants grown on hydroponics. The barley brb mutant and its parent wild-type (H. vulgare cv. Pallas) were grown under nutrient sufficient control conditions, and under conditions of low supply of P and N. Plants were analysed when they were 14-18 days old. Root hydraulic conductivity (Lp) was determined for excised root systems and intact transpiring plants, and cell Lp was determined through cell pressure probe measurements. The formation of Casparian bands and suberin lamellae was followed through staining of cross-sections. The presence or absence of root hairs had no effect on the overall hydraulic response of plants to nutritional treatments. Root and cell Lp did not differ between the two genotypes. The most apparent difference between brb and wild-type plants was the consistently reduced formation of apoplastic barriers in brb plants. Any hydraulic function of root hairs can be redundant in barley, at least under the hydroponic conditions tested.
Collapse
Affiliation(s)
- Shannon Burke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Emma Sadaune
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Lisa Rognon
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Alexane Fontana
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Marianne Jourdrin
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland; and Corresponding author.
| |
Collapse
|
15
|
Zhang L, Yan M, Ren Y, Chen Y, Zhang S. Zinc regulates the hydraulic response of maize root under water stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:123-134. [PMID: 33360236 DOI: 10.1016/j.plaphy.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Zinc (Zn) is involved in plant growth and stress resistance and is known to increase crop yield. Here, we investigated the effect of Zn on water absorption in the roots of maize (Zea mays L.), a crop which is sensitive to Zn deficiency, during water stress conditions. Seedlings of the maize variety "Zhengdan 958" were cultivated with 0.1 or 6 μM ZnSO4·7H2O. To simulate drought stress, three-week-old seedlings were exposed to 15% polyethylene glycol (PEG). Root growth parameters, root antioxidant enzyme activity, root hydraulic conductivity, root aquaporin gene expression, root and leaf anatomy structure, leaf water potential, chlorophyll content, leaf area, and gas exchange parameters were measured. Under water stress, moderate Zn treatment promoted root growth; maintained root and leaf anatomy structural integrity. Moderate Zn significantly increased roots hydraulic conductivity (51%) and decreased roots antioxidant enzyme activity (POD: -11.1%, CAT: -35.1%, SOD: -3.1%) compared with low-level Zn under water stress. The expression of ZmPIP1;1, ZmPIP1;2, and ZmPIP2;2 was significantly higher with moderate Zn treatment than that of low-level Zn treatment. The leaf water potential, chlorophyll content, leaf area, and gas exchange parameters with moderate Zn treatment increased significantly under water stress compared with low-level Zn treatment. The moderate concentration of Zn improved root hydraulic conductivity in maize and increased resistance to simulated drought conditions by maintaining root structural integrity, decreasing antioxidant enzyme activity, and increasing aquaporin gene expression. Moderate Zn application increased root water absorption and leaf transpiration, thereby maintaining maize water balance under water stress conditions.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Minfei Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyuan Ren
- Geography and Environmental Engineering Department, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721013, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Knipfer T, Danjou M, Vionne C, Fricke W. Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. PLANT, CELL & ENVIRONMENT 2021; 44:458-475. [PMID: 33140852 DOI: 10.1111/pce.13936] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/24/2020] [Indexed: 05/21/2023]
Abstract
The aim of the study was to understand the hydraulic response to salt stress of the root system of the comparatively salt-tolerant crop barley (Hordeum vulgare L.). We focused on the transcellular path of water movement across the root cylinder that involves the crossing of membranes. This path allows for selective water uptake, while excluding salt ions. Hydroponically grown plants were exposed to 100 mM NaCl for 5-7 days and analysed when 15-17 days old. A range of complementary and novel approaches was used to determine hydraulic conductivity (Lp). This included analyses at cell, root and plant level and modelling of water flow. Apoplastic barrier formation and gene expression level of aquaporins (AQPs) was analysed. Salt stress reduced the Lp of root system through reducing water flow along the transcellular path. This involved changes in the activity and gene expression level of AQPs. Modelling of root-Lp showed that the reduction in root-Lp did not require added hydraulic resistances through apoplastic barriers at the endodermis. The bulk of data points to a near-perfect semi-permeability of roots of control plants (solute reflection coefficient σ ~1.0). Roots of salt-stressed plants are almost as semi-permeable (σ > 0.8).
Collapse
Affiliation(s)
- Thorsten Knipfer
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
- Department of Viticulture & Enology, University of California, Davis, California, USA
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Danjou
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Charles Vionne
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Saini G, Fricke W. Photosynthetically active radiation impacts significantly on root and cell hydraulics in barley (Hordeum vulgare L.). PHYSIOLOGIA PLANTARUM 2020; 170:357-372. [PMID: 32639611 DOI: 10.1111/ppl.13164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetically active radiation (PAR) affects transpirational water loss, yet we do not know through which mechanisms root water uptake is adjusted in parallel. Here, we exposed hydroponically grown barley plants to three levels of PAR [Normal (control), Low, High] and focused on the role which aquaporins (AQPs), apoplastic barriers (Casparian bands, suberin lamellae) and root morphology play in the adjustment of root hydraulic conductivity (Lp). Plants were analyzed when they were 14-18 days (d) old. Root and cell Lp, which involves AQP activity, was determined through exudation and cell pressure probe measurements, respectively. Gene expression of AQPs was analyzed through qPCR. The formation of apoplastic barriers was studied through staining of cross-sections. The rate of transpirational water loss per plant and unit leaf area increased in response to high-PAR and decreased in response to low-PAR treatments, both during day and night. Hydraulic conductivity in roots decreased significantly at organ and cell level in response to Low-PAR, and increased (organ) or did not change (cell level) in response to High-PAR. The formation of apoplastic barriers was little affected by PAR. Gene expression of AQPs tended to be highest in the Low-PAR treatment. Lateral roots, showing few apoplastic barriers, contributed the least in Low- and the most to root surface area in High-PAR plants. It is concluded that barley plants which experience changes in shoot transpirational water loss in response to PAR adjust root water uptake through changes in root Lp, and that these changes are mediated through altered AQP activity and root morphology.
Collapse
Affiliation(s)
- Gurvin Saini
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| |
Collapse
|
18
|
Torres-Ruiz JM. Virtual issue on Plant hydraulics: update on the recent discoveries. PHYSIOLOGIA PLANTARUM 2020; 168:758-761. [PMID: 32237154 DOI: 10.1111/ppl.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 05/07/2023]
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| |
Collapse
|
19
|
Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10030450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zinc (Zn) is considered an essential element with beneficial effects on plant cells; however, as a heavy metal, it may induce adverse effects on plants if its concentration exceeds a threshold. In this work, the effects of short-term and prolonged application of low (25 µM) and high (500 µM) Zn concentrations on pak choi (Brassica rapa L.) plants were evaluated. For this, two experiments were conducted. In the first, the effects of short-term (15 h) and partial foliar application were evaluated, and in the second a long-term (15 day) foliar application was applied. The results indicate that at short-term, Zn may induce a rapid hydraulic signal from the sprayed leaves to the roots, leading to changes in root hydraulic conductance but without effects on the whole-leaf gas exchange parameters. Root accumulation of Zn may prevent leaf damage. The role of different root and leaf aquaporin isoforms in the mediation of this signal is discussed, since significant variations in PIP1 and PIP2 gene expression were observed. In the second experiment, low Zn concentration had a beneficial effect on plant growth and specific aquaporin isoforms were differentially regulated at the transcriptional level in the roots. By contrast, the high Zn concentration had a detrimental effect on growth, with reductions in the root hydraulic conductance, leaf photosynthesis rate and Ca2+ uptake in the roots. The abundance of the PIP1 isoforms was significantly increased during this response. Therefore, a 25 µM Zn dose resulted in a positive effect in pak choi growth through an increased root hydraulic conductance.
Collapse
|
20
|
Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler-Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L. Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. PLANT, CELL & ENVIRONMENT 2020; 43:344-357. [PMID: 31762057 DOI: 10.1111/pce.13675] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 05/13/2023]
Abstract
Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.
Collapse
Affiliation(s)
- Tino Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Stella Eggels
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, 85354, Germany
| | - Victoria Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Alina Osthoff
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Nandhini Shellakkutti
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Jutta A Baldauf
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Kosala Ranathunge
- School of Biological Sciences, Faculty of Science, University of Western Australia, Perth, 6009, Australia
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| |
Collapse
|
21
|
Li L, Pan S, Melzer R, Fricke W. Apoplastic barriers, aquaporin gene expression and root and cell hydraulic conductivity in phosphate-limited sheepgrass plants. PHYSIOLOGIA PLANTARUM 2020; 168:118-132. [PMID: 31090074 DOI: 10.1111/ppl.12981] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Mineral nutrient supply can affect the hydraulic property of roots. The aim of the present work on sheepgrass (Leymus chinensis L.) plants was to test whether any changes in root hydraulic conductivity (Lp; exudation analyses) in response to a growth-limiting supply of phosphate (P) are accompanied by changes in (1) cell Lp via measuring the cell pressure, (2) the aquaporin (AQP) gene expression by performing qPCR and (3) the formation of apoplastic barriers, by analyzing suberin lamella and Casparian bands via cross-sectional analyses in roots. Plants were grown hydroponically on complete nutrient solution, containing 250 µM P, until they were 31-36 days old, and then kept for 2-3 weeks on either complete solution, or transferred on solution containing 2.5 µM (low-P) or no added P (no-P). Phosphate treatments caused significant decreases in root and cell-Lp and AQP gene expression, while the formation of apoplastic barriers increased, particularly in lateral roots. Experiments using the AQP inhibitor mercury (Hg) suggested that a significant portion of radial root water uptake in sheepgrass occurs along a path involving AQPs, and that the Lp of this path is reduced under low- and no-P. It is concluded that a growth-limiting supply of phosphate causes parallel changes in (1) cell Lp and aquaporin gene expression (decrease) and (2) apoplastic barrier formation (increase), and that the two may combine to reduce root Lp. The reduction in root Lp, in turn, facilitates an increased root-to-shoot surface area ratio, which allocates resources to the root, sourcing the limiting nutrient.
Collapse
Affiliation(s)
- Lingyu Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Republic of Ireland
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sirui Pan
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Republic of Ireland
| | - Rainer Melzer
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
22
|
Armand T, Cullen M, Boiziot F, Li L, Fricke W. Cortex cell hydraulic conductivity, endodermal apoplastic barriers and root hydraulics change in barley (Hordeum vulgare L.) in response to a low supply of N and P. ANNALS OF BOTANY 2019; 124:1091-1107. [PMID: 31309230 PMCID: PMC7145705 DOI: 10.1093/aob/mcz113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/28/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Mineral nutrient limitation affects the water flow through plants. We wanted to test on barley whether any change in root-to-shoot ratio in response to low supply of nitrogen and phosphate is accompanied by changes in root and cell hydraulic properties and involves changes in aquaporin (AQP) gene expression and root apoplastic barriers (suberin lamellae, Casparian bands). METHODS Plants were grown hydroponically on complete nutrient solution or on solution containing only 3.3 % or 2.5 % of the control level of nutrient. Plants were analysed when they were 14-18 d old. RESULTS Nutrient-limited plants adjusted water flow to an increased root-to-shoot surface area ratio through a reduction in root hydraulic conductivity (Lp) as determined through exudation analyses. Cortex cell Lp (cell pressure probe analyses) decreased in the immature but not the mature region of the main axis of seminal roots and in primary lateral roots. The aquaporin inhibitor HgCl2 reduced root Lp most in nutrient-sufficient control plants. Exchange of low-nutrient for control media caused a rapid (20-80 min) and partial recovery in Lp, though cortex cell Lp did not increase in any of the root regions analysed. The gene expression level (qPCR analyses) of five plasma membrane-localized AQP isoforms did not change in bulk root extracts, while the formation of apoplastic barriers increased considerably along the main axis of root and lateral roots in low-nutrient treatments. CONCLUSIONS Decrease in root and cortex cell Lp enables the adjustment of root water uptake to increased root-to-shoot area ratio in nutrient-limited plants. Aquaporins are the prime candidate to play a key role in this response. Modelling of water flow suggests that some of the reduction in root Lp is due to increased formation of apoplastic barriers.
Collapse
Affiliation(s)
- Thomas Armand
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Michelle Cullen
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Florentin Boiziot
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Lingyu Li
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
- For correspondence. E-mail
| |
Collapse
|
23
|
Yue L, Chen F, Yu K, Xiao Z, Yu X, Wang Z, Xing B. Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La 2O 3 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:675-683. [PMID: 30759593 DOI: 10.1016/j.scitotenv.2018.10.320] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 05/27/2023]
Abstract
The increasing occurrence of engineered nanoparticles (NPs) in soils may decrease water uptake in crops, followed by lower crop yield and quality. As one of the most common rare earth oxide NPs, lanthanum oxide (La2O3) NPs may inhibit the relative expressions of aquaporin genes, thus reduce water uptake. In the present study, maize plants were exposed to different La2O3 NPs concentrations (0, 5, 50 mg L-1) for 72 h and 144 h right after the first leaf extended completely. Our results revealed that water uptake was reduced by La2O3 NPs through accelerating the development of apoplastic barriers in maize roots. The level of abscisic acid, determined by using ultra high performance liquid chromatography-tandem mass spectrometry, was increased upon La2O3 NPs exposure. Furthermore, ZmPAL, ZmCCR2 and ZmCAD6, the core genes specific for biosynthesis of lignin, were up-regulated by 3-13 fold in roots exposed to 50 mg L-1 La2O3 NPs. However, ZmF5H was suppressed, indicating that lignin with S units could be excluded for the formed lignin in apoplastic barriers upon La2O3 NPs exposure. The level of essential component of apoplastic barriers - lignin was increased by 1.5-fold. The early development of apoplastic barriers was observed, and stomatal conductance and transpiration rate of La2O3 NPs-treated plants were significantly decreased by 63%-83% and 42%-86%, respectively, as compared to the control. The lignin enriched apoplastic barriers in juvenile maize thus led to the reduction of water uptake, subsequently causing significant growth inhibition. This is the first study to show early development of root apoplastic barriers upon La2O3 NPs exposure. This study will help us better understand the function of apoplastic barriers in roots in response to NPs, further providing fundamental knowledge to develop safer and more efficient agricultural nanotechnology.
Collapse
Affiliation(s)
- Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Kaiqiang Yu
- College of Environmental Science and Engineering, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoyu Yu
- College of Environmental Science and Engineering, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
24
|
Coffey O, Bonfield R, Corre F, Althea Sirigiri J, Meng D, Fricke W. Root and cell hydraulic conductivity, apoplastic barriers and aquaporin gene expression in barley (Hordeum vulgare L.) grown with low supply of potassium. ANNALS OF BOTANY 2018; 122:1131-1141. [PMID: 29961877 PMCID: PMC6324746 DOI: 10.1093/aob/mcy110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/29/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Limited supply of mineral nutrients often reduces plant growth and transpirational water flow while increasing the ratio of water-absorbing root to water-losing shoot surface. This could potentially lead to an imbalance between water uptake (too much) and water loss (too little). The aim of the present study was to test whether, as a countermeasure, the hydraulic properties (hydraulic conductivity, Lp) of roots decrease at organ and cell level and whether any decreases in Lp are accompanied by decreases in the gene expression level of aquaporins (AQPs) or increases in apoplastic barriers to radial water movement. METHODS Barley plants were grown hydroponically on complete nutrient solution, containing 2 mm K+ (100 %), or on low-K solution (0.05 mm K+; 2.5 %), and analysed when they were 15-18 d old. Transpiration, fresh weight, surface area, shoot water potential (ψ), K and Ca concentrations, root (exudation) and cortex cell Lp (cell pressure probe), root anatomy (cross-sections) and AQP gene expression (qPCR) were analysed. KEY RESULTS The surface area ratio of root to shoot increased significantly in response to low K. This was accompanied by a small decrease in the rate of water loss per unit shoot surface area, but a large (~50 %) and significant decrease in Lp at root and cortex cell levels. Aquaporin gene expression in roots did not change significantly, due to some considerable batch-to-batch variation in expression response, though HvPIP2;5 expression decreased on average by almost 50 %. Apoplastic barriers in the endodermis did not increase in response to low K. CONCLUSIONS Barley plants that are exposed to low K adjust to an increased ratio of root (water uptake) to shoot (water loss) surface primarily through a decrease in root and cell Lp. Reduced gene expression of HvPIP2;5 may contribute to the decrease in Lp.
Collapse
Affiliation(s)
- Orla Coffey
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Ronan Bonfield
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Florine Corre
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jane Althea Sirigiri
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Delong Meng
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- For correspondence. E-mail
| |
Collapse
|
25
|
Pawłowicz I, Masajada K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants. Gene 2018; 687:166-172. [PMID: 30445023 DOI: 10.1016/j.gene.2018.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Plant aquaporins constitute a large family of proteins involved in facilitating the transport of water and small neutral molecules across biological membranes. In higher plants they are divided into several sub-families, depending on membrane-type localization and permeability to specific solutes. They are abundantly expressed in the majority of plant organs and tissues, and play a function in primary biological processes. Many studies revealed the significant role of aquaporins in acquiring abiotic stresses' tolerance. This review focuses on aquaporins belonging to PIPs sub-family that are permeable to water and/or carbon dioxide. Isoforms transporting water are involved in hydraulic conductance regulation in the leaves and roots, whereas those transporting carbon dioxide control stomatal and mesophyll conductance in the leaves. Changes in PIP aquaporins abundance/activity in stress conditions allow to maintain the water balance and photosynthesis adjustment. Broad analyses showed that tight control between water and carbon dioxide supplementation mediated by aquaporins influences plant productivity, especially in stress conditions. Involvement of aquaporins in adaptation strategies to dehydrative stresses in different plant species are discussed in this review.
Collapse
Affiliation(s)
- Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland.
| | - Katarzyna Masajada
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| |
Collapse
|