1
|
Lv J, Wu Y, Huang R, Xu R, Zhang J, Liu Y, Luo L, Liu G, Liu P. Combined Analysis of the Leaf Metabolome, Lipidome, and Candidate Gene Function: Insights into Genotypic Variation in Phosphorus Utilization Efficiency in Stylosanthes guianensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2653-2668. [PMID: 39818859 DOI: 10.1021/acs.jafc.4c06927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Stylo (Stylosanthes guianensis) exhibits excellent tolerance to low-phosphate (Pi) availability, but the underlying mechanisms responsible for improving the phosphorus (P) utilization efficiency (PUE) remain unclear. This study employed metabolomics, lipidomics, and gene expression analyses to investigate the differential responses to low-Pi stress between the high-PUE genotype CF047827 and the cultivar Reyan No. 2. Results showed that CF047827 had higher expression levels of membrane lipid remodeling-related genes in its leaves compared to Reyan No. 2 under low-Pi conditions. This was accompanied by greater phospholipid degradation and non-P-containing lipid biosynthesis in the leaves of CF047827. Furthermore, the purple acid phosphatase gene SgPAP27a, which is more highly expressed in the leaves of CF047827 than in Reyan No. 2 under low-Pi conditions, was identified and functionally characterized. Its role in promoting phospholipid degradation and enhancing PUE was confirmed through heterologous expression in Arabidopsis. These findings provide insights and identify potential candidate genes for breeding high-PUE crop cultivars.
Collapse
Affiliation(s)
- Jinhui Lv
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuanhang Wu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ranran Xu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianyu Zhang
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lijuan Luo
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
| | - Guodao Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pandao Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Honda S, Yamazaki Y, Mukada T, Cheng W, Chuba M, Okazaki Y, Saito K, Oikawa A, Maruyama H, Wasaki J, Wagatsuma T, Tawaraya K. Lipidome Profiling of Phosphorus Deficiency-Tolerant Rice Cultivars Reveals Remodeling of Membrane Lipids as a Mechanism of Low P Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:1365. [PMID: 36987053 PMCID: PMC10057753 DOI: 10.3390/plants12061365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice (Oryza sativa L.) cultivars (Akamai, Kiyonishiki, Akitakomachi, Norin No. 1, Hiyadateine, Koshihikari, and Netaro) were grown in 0 (-P) and 8 (+P) mg P L-1 solution cultures. Shoots and roots were collected 5 and 10 days after transplanting (DAT) in solution culture and subjected to lipidome profiling using liquid chromatography-mass spectrometry. Phosphatidylcholine (PC)34, PC36, phosphatidylethanolamine (PE)34, PE36, phosphatidylglycerol (PG)34, phosphatidylinositol (PI)34 were the major phospholipids and digalactosyldiacylglycerol (DGDG)34, DGDG36, 1,2-diacyl-3-O-alpha-glucuronosylglycerol (GlcADG)34, GlcADG36, monogalactosyldiacylglycerol (MGDG)34, MGDG36, sulfoquinovosyldiacylglycerol (SQDG)34 and SQDG36 were the major non-phospholipids. Phospholipids were lower in the plants that were grown under -P conditions than that in the plants that were grown under +P for all cultivars at 5 and 10 DAT. The levels of non-phospholipids were higher in -P plants than that in +P plants of all cultivars at 5 and 10 DAT. Decomposition of phospholipids in roots at 5 DAT correlated with low P tolerance. These results suggest that rice cultivars remodel membrane lipids under P deficiency, and the ability of remodeling partly contributes to low P tolerance.
Collapse
Affiliation(s)
- Soichiro Honda
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Yumiko Yamazaki
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Takumi Mukada
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Weiguo Cheng
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Masaru Chuba
- Yamagata Integrated Agricultural Research Center, Tsuruoka 997-7601, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Hayato Maruyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Jun Wasaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Tadao Wagatsuma
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Keitaro Tawaraya
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| |
Collapse
|
3
|
Suriyagoda LDB, Ryan MH, Gille CE, Dayrell RLC, Finnegan PM, Ranathunge K, Nicol D, Lambers H. Phosphorus fractions in leaves. THE NEW PHYTOLOGIST 2023; 237:1122-1135. [PMID: 36328763 DOI: 10.1111/nph.18588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Leaf phosphorus (P) comprises four major fractions: inorganic phosphate (Pi ), nucleic acids, phospholipids, P-containing metabolites and a residual fraction. In this review paper, we investigated whether allocation of P fractions varies among groups of terrestrial vascular plants, and is indicative of a species' strategy to use P efficiently. We found that as leaf total P concentration increases, the Pi fraction increases the most, without a plateau, while other fractions plateau. Variability of the concentrations of leaf P fractions is greatest among families > species(family) > regions > plant life forms. The percentage of total P allocated to nucleic acid-P (20-35%) and lipid-P (14-34%) varies less among families/species. High photosynthetic P-use efficiency is associated with low concentrations of all P fractions, and preferential allocation of P to metabolite-P and mesophyll cells. Sequential resorption of P from senescing leaves starts with Pi , followed by metabolite-P, and then other organic P fractions. Allocation of P to leaf P fractions varies with season. Leaf phytate concentrations vary considerably among species, associated with variation in photosynthesis and defence. Plasticity of P allocation to its fractions is important for acclimation to low soil P availability, and species-specific P allocation is needed for co-occurrence with other species.
Collapse
Affiliation(s)
- Lalith D B Suriyagoda
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Megan H Ryan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Roberta L C Dayrell
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Dion Nicol
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Department of Primary Industries and Regional Development, Western Australia, Dryland Research Institute, Merredin, WA, 6415, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
4
|
Soumya PR, Vengavasi K, Pandey R. Adaptive strategies of plants to conserve internal phosphorus under P deficient condition to improve P utilization efficiency. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1981-1993. [PMID: 36573147 PMCID: PMC9789281 DOI: 10.1007/s12298-022-01255-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) is one of the limiting factors for plant growth and productivity due to its slow diffusion and immobilization in the soil which necessitates application of phosphatic fertilizers to meet the crop demand and obtain maximum yields. However, plants have evolved mechanisms to adapt to low P stress conditions either by increasing acquisition (alteration of belowground processes) or by internal inorganic P (Pi) utilization (cellular Pi homeostasis) or both. In this review, we have discussed the adaptive strategies that conserve the use of P and maintain cellular Pi homeostasis in the cytoplasm. These strategies involve modification in membrane lipid composition, flavanol/anthocyanin level, scavenging and reutilization of Pi adsorbed in cell wall pectin, remobilization of Pi during senescence by enzymes like RNases and purple acid phosphatases, alternative mitochondrial electron transport, and glycolytic pathways. The remobilization of Pi from senescing tissues and its internal redistribution to various cellular organelles is mediated by various Pi transporters. Although much efforts have been made to enhance P acquisition efficiency, an understanding of the physiological mechanisms conserving internal Pi and their manipulation would be useful for plants that can utilize P more efficiently to produce optimum growth per unit P uptake.
Collapse
Affiliation(s)
- Preman R. Soumya
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
- Present Address: Regional Agricultural Research Station, Kerala Agricultural University, Ambalavayal, Wayanad, Kerala 673593 India
| | - Krishnapriya Vengavasi
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
5
|
Li P, Yu J, Feng N, Weng J, Rehman A, Huang J, Tu S, Niu Q. Physiological and Transcriptomic Analyses Uncover the Reason for the Inhibition of Photosynthesis by Phosphate Deficiency in Cucumis melo L. Int J Mol Sci 2022; 23:ijms232012073. [PMID: 36292929 PMCID: PMC9603772 DOI: 10.3390/ijms232012073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Phosphate (Pi) deficiency is a common phenomenon in agricultural production and limits plant growth. Recent work showed that long-term Pi deficiency caused the inhibition of photosynthesis and inefficient electron transport. However, the underlying mechanisms are still unknown. In this study, we used the physiological, histochemical, and transcriptomic methods to investigate the effect of low-Pi stress on photosynthetic gas exchange parameters, cell membrane lipid, chloroplast ultrastructure, and transcriptional regulation of key genes in melon seedlings. The results showed that Pi deficiency significantly downregulated the expression of aquaporin genes, induced an increase in ABA levels, and reduced the water content and free water content of melon leaves, which caused physiological drought in melon leaves. Therefore, gas exchange was disturbed. Pi deficiency also reduced the phospholipid contents in leaf cell membranes, caused the peroxidation of membrane lipids, and destroyed the ultrastructure of chloroplasts. The transcriptomic analysis showed that 822 differentially expressed genes (DEGs) were upregulated and 1254 downregulated by Pi deficiency in leaves. GO and KEGG enrichment analysis showed that DEGs significantly enriched in chloroplast thylakoid membrane composition (GO:0009535), photosynthesis-antenna proteins (map00196), and photosynthesis pathways (map00195) were downregulated by Pi deficiency. It indicated that Pi deficiency regulated photosynthesis-related genes at the transcriptional level, thereby affecting the histochemical properties and physiological functions, and consequently causing the reduced light assimilation ability and photosynthesis efficiency. It enriches the mechanism of photosynthesis inhibition by Pi deficiency.
Collapse
|
6
|
Han Y, Hong W, Xiong C, Lambers H, Sun Y, Xu Z, Schulze WX, Cheng L. Combining analyses of metabolite profiles and phosphorus fractions to explore high phosphorus utilization efficiency in maize. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4184-4203. [PMID: 35303743 DOI: 10.1093/jxb/erac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) limitation is a significant factor restricting crop production in agricultural systems, and enhancing the internal P utilization efficiency (PUE) of crops plays an important role in ensuring sustainable P use in agriculture. To better understand how P is remobilized to affect crop growth, we first screened P-efficient (B73 and GEMS50) and P-inefficient (Liao5114) maize genotypes at the same shoot P content, and then analyzed P pools and performed non-targeted metabolomic analyses to explore changes in cellular P fractions and metabolites in maize genotypes with contrasting PUE. We show that lipid P and nucleic acid P concentrations were significantly lower in lower leaves of P-efficient genotypes, and these P pools were remobilized to a major extent in P-efficient genotypes. Broad metabolic alterations were evident in leaves of P-efficient maize genotypes, particularly affecting products of phospholipid turnover and phosphorylated compounds, and the shikimate biosynthesis pathway. Taken together, our results suggest that P-efficient genotypes have a high capacity to remobilize lipid P and nucleic acid P and promote the shikimate pathway towards efficient P utilization in maize.
Collapse
Affiliation(s)
- Yang Han
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Wanting Hong
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Chuanyong Xiong
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Hans Lambers
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
- School of Biological Sciences and UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Yan Sun
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Zikai Xu
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Lingyun Cheng
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
7
|
Hayes PE, Adem GD, Pariasca-Tanaka J, Wissuwa M. Leaf phosphorus fractionation in rice to understand internal phosphorus-use efficiency. ANNALS OF BOTANY 2022; 129:287-302. [PMID: 34875007 PMCID: PMC8835646 DOI: 10.1093/aob/mcab138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P). The overarching objective of this study was to understand how these key P fractions influence PUE. METHODS Three high-PUE and two low-PUE rice genotypes were grown in hydroponics with contrasting P supplies. We measured PUE, total P, P fractions, photosynthesis and biomass. KEY RESULTS Low investment in lipid-P was strongly associated with increased photosynthetic PUE (PPUE), achieved by reducing total leaf P concentration while maintaining rapid photosynthetic rates. All low-P plants exhibited a low investment in inorganic-P and lipid-P, but not nucleic acid-P. In addition, whole-plant PUE was strongly associated with reduced total P concentration, increased biomass and increased preferential allocation of resources to the youngest mature leaves. CONCLUSIONS Lipid remodelling has been shown in rice before, but we show for the first time that reduced lipid-P investment improves PUE in rice without reducing photosynthesis. This presents a novel pathway for increasing PUE by targeting varieties with reduced lipid-P investment. This will benefit rice production in low-P soils and in areas where fertilizer use is limited, improving global food security by reducing P fertilizer demands and food production costs.
Collapse
Affiliation(s)
- Patrick E Hayes
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Getnet D Adem
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Juan Pariasca-Tanaka
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Çakirsoy I, Miyamoto T, Ohtake N. Physiology of microalgae and their application to sustainable agriculture: A mini-review. FRONTIERS IN PLANT SCIENCE 2022; 13:1005991. [PMID: 36466259 PMCID: PMC9712798 DOI: 10.3389/fpls.2022.1005991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Concern that depletion of fertilizer feedstocks, which are a finite mineral resource, threatens agricultural sustainability has driven the exploration of sustainable methods of soil fertilization. Given that microalgae, which are unicellular photosynthetic organisms, can take up nutrients efficiently from water systems, their application in a biological wastewater purification system followed by the use of their biomass as a fertilizer alternative has attracted attention. Such applications of microalgae would contribute to the accelerated recycling of nutrients from wastewater to farmland. Many previous reports have provided information on the physiological characteristics of microalgae that support their utility. In this review, we focus on recent achievements of studies on microalgal physiology and relevant applications and outline the prospects for the contribution of microalgae to the establishment of sustainable agricultural practices.
Collapse
Affiliation(s)
- Iffet Çakirsoy
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takuji Miyamoto
- Sakeology Center, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| | - Norikuni Ohtake
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| |
Collapse
|
9
|
Verma L, Kohli PS, Maurya K, K B A, Thakur JK, Giri J. Specific galactolipids species correlate with rice genotypic variability for phosphate utilization efficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:105-115. [PMID: 34628172 DOI: 10.1016/j.plaphy.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane lipid remodeling helps in the efficient utilization of phosphorus (P) by replacing phospholipids with galactolipids during P deficiency. Previous studies have shown lipid remodeling in rice under P deficiency; however, main lipid classes did not show association with superior P-use-efficiency in rice genotypes. Here, diverse rice genotypes were extensively phenotyped in normal (NP) and low P (LP) conditions. Based on the phenotypic response to P deficiency, genotypes were identified as tolerant and sensitive. Further, bulks were generated differing in their physiological P-use-efficiency (PPUE) during LP condition. Shoot lipidome profiling of genotypes was performed and used to correlate the abundance of various lipid classes and their constituent species with the PPUE of the genotypes. Lipid remodeling was observed as a P-starvation-induced response in all the genotypes. However, neither total galacto- and phospholipids nor the lipid classes correlated with PPUE during P deficiency. However, the difference in PPUE in the two bulks correlated with specific lipid species of galactolipids (DGDG, MGDG). Further, DGDG34:3 had the highest Mol% among the differentially accumulated lipid species between the two bulks. Our study reveals the importance of specific galactolipids species in rice adaptation to P deficient soils and thus opens new targets for future research.
Collapse
Affiliation(s)
- Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Abhijith K B
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Matsushima C, Shenton M, Kitahara A, Wasaki J, Oikawa A, Cheng W, Ikeo K, Tawaraya K. Multiple analysis of root exudates and microbiome in rice (Oryza sativa) under low P conditions. Arch Microbiol 2021; 203:5599-5611. [PMID: 34455446 DOI: 10.1007/s00203-021-02539-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022]
Abstract
Plants release various metabolites from roots and root exudates contribute to differences in stress tolerance among plant species. Plant and soil microbes have complex interactions that are affected by biotic and abiotic factors. The purpose of this study was to examine the differences in metabolites in root exudates of rice (Oryza sativa) cultivars and their correlation with bacterial populations in the rhizosphere. Two rice cultivars (O. sativa cv. Akamai and O. sativa cv. Koshihikari) were grown in soils fertilized with 0 g P kg-1 (- P) or 4.8 g P kg-1 (+ P). Root exudates and root-attached soil were collected at 13 and 20 days after transplanting (DAT) and their metabolites and bacterial community structure were determined. The exudation of proline, serine, threonine, valine and 4-coumarate were increased under low P conditions in both cultivars. There was a positive correlation between the concentration of pantothenate in root exudates and the representation of members of the genera Clostridium and Sporosarcina, which were negatively correlated with root dry weight. Gracilibacter, Opitutus, Pelotomaculum, Phenylobacterium and Oxobacter were positively correlated with root dry weight and presence of allantoin, 2-aminobtyrate and GlcNac. This study provides new information about the response of plants and rhizosphere soil bacteria to low P conditions.
Collapse
Affiliation(s)
| | - Matthew Shenton
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan.,Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Ayaka Kitahara
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Jun Wasaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8521, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Weiguo Cheng
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Keitaro Tawaraya
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan.
| |
Collapse
|
11
|
Ventura G, Calvano CD, Cinquepalmi V, Losito I, Cataldi TRI. Characterization of Glucuronosyl-diacyl/monoacylglycerols and Discovery of Their Acylated Derivatives in Tomato Lipid Extracts by Reversed-Phase Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2227-2240. [PMID: 34260857 DOI: 10.1021/jasms.1c00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucuronic acid containing diacylglycerols (3-(O-α-d-glucuronopyranosyl)-1,2-diacyl-sn-glycerols, GlcA-DAG) are glycolipids of plant membranes especially formed under phosphate-depletion conditions. An analytical approach for the structural characterization of GlcA-DAG in red ripe tomato (Solanum lycopersicum L.) extracts, based on reversed-phase liquid chromatography (RPLC) coupled with electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) using a linear ion trap, is described in this paper. At least 14 GlcA-DAG (R1/R2) species, including four regioisomers, containing three predominant fatty acyl chains C16:0, C18:2, and C18:3, were identified for the first time. Moreover, 29 GlcA-DAG acylated on the glucuronosyl ring (acyl-R3 GlcA-DAG) were discovered, alongside 15 acylated lyso-forms, i.e., acylated 3-(O-α-d-glucuronosyl)monoacylglycerols, abbreviated as acyl-R3 GlcA-MAG (R1/0) or (0/R2). Although many of these acylated lyso-forms were isomeric with GlcA-DAG (i.e., acyl chains with equivalent sum composition), they were successfully separated by reversed-phase liquid chromatography (RPLC) using a solid-core C18 column packed with 2.6 μm particle size. Tandem MS (and eventually MS3) data obtained from sodium adducts ([M + Na]+) and deprotonated molecules ([M - H]-) were fundamental to detect diagnostic product ions related to the glucuronosyl ring and then determine the identity of all investigated glycolipids, especially to recognize the acyl chain linked to the ring. A classification of GlcA-MAG, GlcA-DAG, and acylated GlcA-DAG and GlcA-MAG was generated by an in house-built database. The discovery of acylated derivatives emphasized the already surprising heterogeneity of glucuronic acid-containing mono- and diacylglycerols in tomato plants, stimulating interesting questions on the role played by these glycolipids.
Collapse
|
12
|
Kalozoumis P, Savvas D, Aliferis K, Ntatsi G, Marakis G, Simou E, Tampakaki A, Karapanos I. Impact of Plant Growth-Promoting Rhizobacteria Inoculation and Grafting on Tolerance of Tomato to Combined Water and Nutrient Stress Assessed via Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:670236. [PMID: 34149768 PMCID: PMC8212936 DOI: 10.3389/fpls.2021.670236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 05/27/2023]
Abstract
In the current study, inoculation with plant growth-promoting rhizobacteria (PGPR) and grafting were tested as possible cultural practices that may enhance resilience of tomato to stress induced by combined water and nutrient shortage. The roots of tomato grown on perlite were either inoculated or not with PGPR, applying four different treatments. These were PGPR-T1, a mix of two Enterobacter sp. strains (C1.2 and C1.5); PGPR-T2, Paenibacillus sp. strain DN1.2; PGPR-T3, Enterobacter mori strain C3.1; and PGPR-T4, Lelliottia sp. strain D2.4. PGPR-treated plants were either self-grafted or grafted onto Solanum lycopersicum cv. M82 and received either full or 50% of their standard water, nitrogen, and phosphorus needs. The vegetative biomass of plants subjected to PGPR-T1 was not reduced when plants were cultivated under combined stress, while it was reduced by stress to the rest of the PGPR treatments. However, PGPR-T3 increased considerably plant biomass of non-stressed tomato plants than did all other treatments. PGPR application had no impact on fruit biomass, while grafting onto 'M82' increased fruit production than did self-grafting. Metabolomics analysis in tomato leaves revealed that combined stress affects several metabolites, most of them already described as stress-related, including trehalose, myo-inositol, and monopalmitin. PGPR inoculation with E. mori strain C3.1 affected metabolites, which are important for plant/microbe symbiosis (myo-inositol and monopalmitin). The rootstock M82 did not affect many metabolites in plant leaves, but it clearly decreased the levels of malate and D-fructose and imposed an accumulation of oleic acid. In conclusion, PGPR are capable of increasing tomato tolerance to combined stress. However, further research is required to evaluate more strains and refine protocols for their application. Metabolites that were discovered as biomarkers could be used to accelerate the screening process for traits such as stress tolerance to abiotic and/or abiotic stresses. Finally, 'M82' is a suitable rootstock for tomato, as it is capable of increasing fruit biomass production.
Collapse
Affiliation(s)
- Panagiotis Kalozoumis
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Savvas
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Aliferis
- Department of Crop Science, Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
- Department of Plant Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, QC, Canada
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, Athens, Greece
| | - George Marakis
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, Athens, Greece
| | - Evridiki Simou
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, Athens, Greece
| | - Anastasia Tampakaki
- Department of Crop Science, Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Ioannis Karapanos
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
13
|
Pongrac P, Castillo-Michel H, Reyes-Herrera J, Hancock RD, Fischer S, Kelemen M, Thompson JA, Wright G, Likar M, Broadley MR, Vavpetič P, Pelicon P, White PJ. Effect of phosphorus supply on root traits of two Brassica oleracea L. genotypes. BMC PLANT BIOLOGY 2020; 20:368. [PMID: 32758143 PMCID: PMC7404929 DOI: 10.1186/s12870-020-02558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency limits crop production worldwide. Crops differ in their ability to acquire and utilise the P available. The aim of this study was to determine root traits (root exudates, root system architecture (RSA), tissue-specific allocation of P, and gene expression in roots) that (a) play a role in P-use efficiency and (b) contribute to large shoot zinc (Zn) concentration in Brassica oleracea. RESULTS Two B. oleracea accessions (var. sabellica C6, a kale, and var. italica F103, a broccoli) were grown in a hydroponic system or in a high-throughput-root phenotyping (HTRP) system where they received Low P (0.025 mM) or High P (0.25 mM) supply for 2 weeks. In hydroponics, root and shoot P and Zn concentrations were measured, root exudates were profiled using both Fourier-Transform-Infrared spectroscopy and gas-chromatography-mass spectrometry and previously published RNAseq data from roots was re-examined. In HTRP experiments, RSA (main and lateral root number and lateral root length) was assessed and the tissue-specific distribution of P was determined using micro-particle-induced-X-ray emission. The C6 accession had greater root and shoot biomass than the F103 accession, but the latter had a larger shoot P concentration than the C6 accession, regardless of the P supply in the hydroponic system. The F103 accession had a larger shoot Zn concentration than the C6 accession in the High P treatment. Although the F103 accession had a larger number of lateral roots, which were also longer than in the C6 accession, the C6 accession released a larger quantity and number of polar compounds than the F103 accession. A larger number of P-responsive genes were found in the Low P treatment in roots of the F103 accession than in roots of the C6 accession. Expression of genes linked with "phosphate starvation" was up-regulated, while those linked with iron homeostasis were down-regulated in the Low P treatment. CONCLUSIONS The results illustrate large within-species variability in root acclimatory responses to P supply in the composition of root exudates, RSA and gene expression, but not in P distribution in root cross sections, enabling P sufficiency in the two B. oleracea accessions studied.
Collapse
Affiliation(s)
- Paula Pongrac
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | | | | | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sina Fischer
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Mitja Kelemen
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Jacqueline A Thompson
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Gladys Wright
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Martin R Broadley
- Plant and Crop Sciences Division, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, 11451, Saudi Arabia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Yu D, Boughton BA, Hill CB, Feussner I, Roessner U, Rupasinghe TWT. Insights Into Oxidized Lipid Modification in Barley Roots as an Adaptation Mechanism to Salinity Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:1. [PMID: 32117356 PMCID: PMC7011103 DOI: 10.3389/fpls.2020.00001] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/01/2020] [Indexed: 05/18/2023]
Abstract
Lipidomics is an emerging technology, which aims at the global characterization and quantification of lipids within biological matrices including biofluids, cells, whole organs and tissues. The changes in individual lipid molecular species in stress treated plant species and different cultivars can indicate the functions of genes affecting lipid metabolism or lipid signaling. Mass spectrometry-based lipid profiling has been used to track the changes of lipid levels and related metabolites in response to salinity stress. We have developed a comprehensive lipidomics platform for the identification and direct qualification and/or quantification of individual lipid species, including oxidized lipids, which enables a more systematic investigation of peroxidation of individual lipid species in barley roots under salinity stress. This new lipidomics approach has improved with an advantage of analyzing the composition of acyl chains at the molecular level, which facilitates to profile precisely the 18:3-containing diacyl-glycerophosphates and allowed individual comparison of lipids across varieties. Our findings revealed a general decrease in most of the galactolipids in plastid membranes, and an increase of glycerophospholipids and acylated steryl glycosides, which indicate that plastidial and extraplastidial membranes in barley roots ubiquitously tend to form a hexagonal II (HII) phase under salinity stress. In addition, salt-tolerant and salt-sensitive cultivars showed contrasting changes in the levels of oxidized membrane lipids. These results support the hypothesis that salt-induced oxidative damage to membrane lipids can be used as an indication of salt stress tolerance in barley.
Collapse
Affiliation(s)
- Dingyi Yu
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- St. Vincent’s Institute of Medical Research, University of Melbourne, Fitzroy, VIC, Australia
| | - Berin A. Boughton
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Camilla B. Hill
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
15
|
Pongrac P, Fischer S, Thompson JA, Wright G, White PJ. Early Responses of Brassica oleracea Roots to Zinc Supply Under Sufficient and Sub-Optimal Phosphorus Supply. FRONTIERS IN PLANT SCIENCE 2020; 10:1645. [PMID: 31998335 PMCID: PMC6962232 DOI: 10.3389/fpls.2019.01645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/21/2019] [Indexed: 05/24/2023]
Abstract
Shoot zinc (Zn) concentration in Brassica oleracea is affected by soil Zn and phosphorus (P) supply. Most problematic is the negative impact of P fertilizers on Zn concentrations in crops, which makes balancing yield and mineral quality challenging. To evaluate early molecular mechanisms involved in the accumulation of large shoot Zn concentrations regardless of the P supply, two B. oleracea accessions differing in root architecture and root exudates were grown hydroponically for two weeks with different combinations of P and Zn supply. Ionome profiling and deep RNA sequencing of roots revealed interactions of P and Zn in planta, without apparent phenotypic effects. In addition, increasing P supply did not reduce tissue Zn concentration. Substantial changes in gene expression in response to different P and/or Zn supplies in roots of both accessions ensured nutritionally sufficient P and Zn uptake. Numerous genes were differentially expressed after changing Zn or P supply and most of them were unique to only one accession, highlighting their different strategies in achieving nutrient sufficiency. Thus, different gene networks responded to the changing P and Zn supply in the two accessions. Additionally, enrichment analysis of gene ontology classes revealed that genes involved in lipid metabolism, response to starvation, and anion transport mechanisms were most responsive to differences in P and Zn supply in both accessions. The results agreed with previously studies demonstrating alterations in P and Zn transport and phospholipid metabolism in response to reduced P and Zn supply. It is anticipated that improved knowledge of genes responsive to P or Zn supply will help illuminate the roles in uptake and accumulation of P and Zn and might identify candidate genes for breeding high-yield-high-Zn brassicas.
Collapse
Affiliation(s)
- Paula Pongrac
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
- Low and Medium Energy Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sina Fischer
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Gladys Wright
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
| | - Philip J. White
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Peng Z, Feng L, Wang X, Miao X. Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158522. [PMID: 31487556 DOI: 10.1016/j.bbalip.2019.158522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
Abstract
Organisms use various adaptive strategies against phosphate stress, including lipid remodeling. Here, the response of major membrane lipids to phosphate stress was analyzed in Synechococcus sp. PCC 7942. Unlike plants and eukaryotic microalgae, no significant increases in neutral lipids were found, whereas glycolipids content increased to as high as 6.13% (of dry cell weight, DCW) and phospholipids decreased to 0.34% (of DCW) after 16 days of cultivation without phosphate. Glycolipids accumulation were mainly attributed to the significant increase of digalactosyldiacylglycerol (DGDG) by 50% and sulfoquinovosyldiaclglycerol (SQDG) by 90%, both of which acted as complementary lipids for phosphatidylglycerol (PG) in the cyanobacterial membrane. Also, a notable increase in content (by 48%) of C18 fatty acids (especially C18:1) was observed in all glycolipids at the expense of C12 and C14 (72%). These changes may contribute to membrane fluidity and photosynthetic activity for basic cell metabolism and phosphate stress adaptation. Lipidomic analyses showed the reduction of PG 18:1/16: 0 (by 52%) with the increase of DGDG 18:1/16:0 (133%) and SQDG 18:1/16:0 (245%), strongly suggesting a direct conversion of PG to DGDG and SQDG. Moreover, the decreasing amount of monogalactosyldiacylglycerol (MGDG) 16:1/16:0 (22%) was consistent with the increase of free fatty acids (125%) on day 2 of phosphate absence, which suggested that MGDG is more likely to provide a pool of fatty acids for de novo synthesis of glycolipids. This study provides valuable insight into cyanobacteria adaptation strategies to phosphate stress by membrane lipid remodeling and unveils the underlying acyl chain fluxes into glycolipids.
Collapse
Affiliation(s)
- Zhou Peng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoxue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Dissanayaka DMSB, Plaxton WC, Lambers H, Siebers M, Marambe B, Wasaki J. Molecular mechanisms underpinning phosphorus-use efficiency in rice. PLANT, CELL & ENVIRONMENT 2018; 41:1483-1496. [PMID: 29520969 DOI: 10.1111/pce.13191] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 05/18/2023]
Abstract
Orthophosphate (H2 PO4- , Pi) is an essential macronutrient integral to energy metabolism as well as a component of membrane lipids, nucleic acids, including ribosomal RNA, and therefore essential for protein synthesis. The Pi concentration in the solution of most soils worldwide is usually far too low for maximum growth of crops, including rice. This has prompted the massive use of inefficient, polluting, and nonrenewable phosphorus (P) fertilizers in agriculture. We urgently need alternative and more sustainable approaches to decrease agriculture's dependence on Pi fertilizers. These include manipulating crops by (a) enhancing the ability of their roots to acquire limiting Pi from the soil (i.e. increased P-acquisition efficiency) and/or (b) increasing the total biomass/yield produced per molecule of Pi acquired from the soil (i.e. increased P-use efficiency). Improved P-use efficiency may be achieved by producing high-yielding plants with lower P concentrations or by improving the remobilization of acquired P within the plant so as to maximize growth and biomass allocation to developing organs. Membrane lipid remodelling coupled with hydrolysis of RNA and smaller P-esters in senescing organs fuels P remobilization in rice, the world's most important cereal crop.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-7-1, Higashi-, Hiroshima, 739-8521, Japan
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - William C Plaxton
- Department of Biology and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - Meike Siebers
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Buddhi Marambe
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-7-1, Higashi-, Hiroshima, 739-8521, Japan
| |
Collapse
|