1
|
Salehinia S, Didaran F, Aliniaeifard S, Zohrabi S, MacPherson S, Lefsrud M. Green light enhances the phytochemical preservation of lettuce during postharvest cold storage. PLoS One 2024; 19:e0311100. [PMID: 39546455 PMCID: PMC11567635 DOI: 10.1371/journal.pone.0311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024] Open
Abstract
The postharvest lighting environment is a main factor that influences quality preservation for harvested biomass. The objective of this study was to evaluate postharvest changes in bioactive compounds of lettuce with different storage light spectra. The effects of green LEDs with peaks at 500 nm and 530 nm, white LEDs (400-700 nm), and dark storage were evaluated, where light intensity (10 μmol m-2 s-1) and photoperiod (12 h per day) were constant with air temperature at 5°C over the 14 d treatment period. Lettuce stored with 500 nm and 530 nm green LEDs exhibited 1474.5% and 1451.8% (approximately 15.7 and 15.5 times) higher antioxidant activity, respectively, compared to dark storage. Significant improvements in total phenolic content, and 67.5% and 64.8% increases in total soluble solids with 530 nm and 500 nm green LEDs over dark storage were discerned. Exposure to 530 nm green LEDs led to 128.2% (approximately 2.28 times) higher anthocyanin content, a 26.2% increase in carotenoids, and a 95% rise in flavonoid content compared to dark storage. Increases of 26.4% and 16.0% in chlorophyll a content in lettuce stored under 500 nm and 530 nm green LEDs, respectively, and 65.6% and 46.6% rises in the Chlorophyll a/b ratio were observed. Compared to dark storage, green LEDs (500 nm) resulted in a 13.5% higher total chlorophyll content. Findings underscore the positive impact of green LEDs on the nutritional quality of lettuce, providing insight for postharvest practices.
Collapse
Affiliation(s)
- Shafieh Salehinia
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Fardad Didaran
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Sasan Aliniaeifard
- Controlled Environment Agriculture Center, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Saman Zohrabi
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Trivellini A, Toscano S, Romano D, Ferrante A. LED Lighting to Produce High-Quality Ornamental Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1667. [PMID: 37111890 PMCID: PMC10144751 DOI: 10.3390/plants12081667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The flexibility of LED technology, in terms of energy efficiency, robustness, compactness, long lifetime, and low heat emission, as well as its applications as a sole source or supplemental lighting system, offers interesting potential, giving the ornamental industry an edge over traditional production practices. Light is a fundamental environmental factor that provides energy for plants through photosynthesis, but it also acts as a signal and coordinates multifaceted plant-growth and development processes. With manipulations of light quality affecting specific plant traits such as flowering, plant architecture, and pigmentation, the focus has been placed on the ability to precisely manage the light growing environment, proving to be an effective tool to produce tailored plants according to market request. Applying lighting technology grants growers several productive advantages, such as planned production (early flowering, continuous production, and predictable yield), improved plant habitus (rooting and height), regulated leaf and flower color, and overall improved quality attributes of commodities. Potential LED benefits to the floriculture industry are not limited to the aesthetic and economic value of the product obtained; LED technology also represents a solid, sustainable option for reducing agrochemical (plant-growth regulators and pesticides) and energy inputs (power energy).
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Stefania Toscano
- Department of Science Veterinary, Università degli Studi di Messina, 98168 Messina, Italy;
| | - Daniela Romano
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
3
|
Hao JF, Wang C, Gu CR, Xu DX, Zhang L, Zhang HG. Anatomical observation and transcriptome analysis of buds reveal the association between the AP2 gene family and reproductive induction in hybrid larch (Larix kaempferi × Larix olgensis). TREE PHYSIOLOGY 2023; 43:118-129. [PMID: 36150026 PMCID: PMC9833870 DOI: 10.1093/treephys/tpac111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Hybrid larch is an excellent afforestation species in northern China. The instability of seed yield is an urgent problem to be solved. The biological characteristics related to seed setting in larch are different from those in angiosperms and other gymnosperms. Studying the developmental mechanism of the larch sporophyll can deepen our understanding of conifer reproductive development and help to ensure an adequate supply of seeds in the seed orchard. The results showed that the formation of microstrobilus primordia in hybrid larch could be observed in anatomical sections collected in the middle of July. The contents of endogenous gibberellin 3 (GA3) and abscisic acid (ABA) were higher and the contents of GA4, GA7, jasmonic acid and salicylic acid were lower in multiseeded larch. Transcriptome analysis showed that transcription factors were significantly enriched in the AP2 family. There were 23 differentially expressed genes in the buds of the multiseeded and less-seeded types, and the expression of most of these genes was higher in the buds than in the needles. We conclude that mid-July is the early stage of reproductive organ development in hybrid larch and is suitable for the study of reproductive development. GA3 and ABA may be helpful for improving seed setting in larch, and 23 AP2/EREBP family genes are involved in the regulation of reproductive development in larch.
Collapse
Affiliation(s)
- Jun-Fei Hao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Chen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Chen-Rui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Dai-Xi Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Han-Guo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
4
|
Artés-Hernández F, Castillejo N, Martínez-Zamora L. UV and Visible Spectrum LED Lighting as Abiotic Elicitors of Bioactive Compounds in Sprouts, Microgreens and Baby Leaves. A Comprehensive Review Including Their Mode of Action. Foods 2022; 11:foods11030265. [PMID: 35159417 PMCID: PMC8834035 DOI: 10.3390/foods11030265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
According to social demands, the agri-food industry must elaborate convenient safe and healthy foods rich in phytochemicals while minimising processing inputs like energy consumption. Young plants in their first stages of development represent great potential. Objective: This review summarises the latest scientific findings concerning the use of UV and visible spectrum LED lighting as green, sustainable, and low-cost technologies to improve the quality of sprouts, microgreens, and baby leaves to enhance their health-promoting compounds, focusing on their mode of action while reducing costs and energy. Results: These technologies applied during growing and/or after harvesting were able to improve physiological and morphological development of sprouted seeds while increasing their bioactive compound content without compromising safety and other quality attributes. The novelty is to summarise the main findings published in a comprehensive review, including the mode of action, and remarking on the possibility of its postharvest application where the literature is still scarce. Conclusions: Illumination with UV and/or different regions of the visible spectrum during growing and shelf life are good abiotic elicitors of the production of phytochemicals in young plants, mainly through the activation of specific photoreceptors and ROS production. However, we still need to understand the mechanistic responses and their dependence on the illumination conditions.
Collapse
|
5
|
Sharma S, Sanyal SK, Sushmita K, Chauhan M, Sharma A, Anirudhan G, Veetil SK, Kateriya S. Modulation of Phototropin Signalosome with Artificial Illumination Holds Great Potential in the Development of Climate-Smart Crops. Curr Genomics 2021; 22:181-213. [PMID: 34975290 PMCID: PMC8640849 DOI: 10.2174/1389202922666210412104817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Changes in environmental conditions like temperature and light critically influence crop production. To deal with these changes, plants possess various photoreceptors such as Phototropin (PHOT), Phytochrome (PHY), Cryptochrome (CRY), and UVR8 that work synergistically as sensor and stress sensing receptors to different external cues. PHOTs are capable of regulating several functions like growth and development, chloroplast relocation, thermomorphogenesis, metabolite accumulation, stomatal opening, and phototropism in plants. PHOT plays a pivotal role in overcoming the damage caused by excess light and other environmental stresses (heat, cold, and salinity) and biotic stress. The crosstalk between photoreceptors and phytohormones contributes to plant growth, seed germination, photo-protection, flowering, phototropism, and stomatal opening. Molecular genetic studies using gene targeting and synthetic biology approaches have revealed the potential role of different photoreceptor genes in the manipulation of various beneficial agronomic traits. Overexpression of PHOT2 in Fragaria ananassa leads to the increase in anthocyanin content in its leaves and fruits. Artificial illumination with blue light alone and in combination with red light influence the growth, yield, and secondary metabolite production in many plants, while in algal species, it affects growth, chlorophyll content, lipid production and also increases its bioremediation efficiency. Artificial illumination alters the morphological, developmental, and physiological characteristics of agronomic crops and algal species. This review focuses on PHOT modulated signalosome and artificial illumination-based photo-biotechnological approaches for the development of climate-smart crops.
Collapse
Affiliation(s)
- Sunita Sharma
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sibaji K. Sanyal
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kumari Sushmita
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Gireesh Anirudhan
- Integrated Science Education and Research Centre (ISERC), Institute of Science (Siksha Bhavana), Visva Bharati (A Central University), Santiniketan (PO), West Bengal, 731235, India
| | - Sindhu K. Veetil
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Castillejo N, Martínez-Zamora L, Gómez PA, Pennisi G, Crepaldi A, Fernández JA, Orsini F, Artés-Hernández F. Postharvest yellow LED lighting affects phenolics and glucosinolates biosynthesis in broccoli sprouts. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|