1
|
Zhang X, Wen J, Jia S, He Y, Yang W, Chen W, Li D, Liu R, Liu Q, Cai Y, Cheng K, Zhang X. Glutamine synthetase GhGLN1.5 regulates arbuscular mycorrhizal symbiosis and Verticillium wilt resistance in cotton by modulating inorganic nitrogen assimilation. THE NEW PHYTOLOGIST 2025; 246:702-717. [PMID: 40007156 DOI: 10.1111/nph.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in the nitrogen uptake and Verticillium wilt resistance of cotton. The absorbed inorganic nitrogen is converted into organic nitrogen through nitrogen assimilation mediated by glutamine synthetase (GS). However, the role of GS in AM symbiosis and Verticillium wilt resistance remains unclear. We identified an AM fungus-induced GS gene, GhGLN1.5, which participated in AM symbiosis. Both in vivo and in vitro analyses demonstrated that GhGLN1.5 exhibits catalytic activity of GS. The knockdown of GhGLN1.5 resulted in a reduction of AM colonization, nitrogen uptake capacity, and AM symbiosis-dependent resistance to Verticillium wilt. Heterologous expression of GhGLN1.5 enhanced AM symbiosis, increased GS activity, and promoted plant growth. The knockout of GhGLN1.5 in cotton inhibited AM symbiosis. Furthermore, we identified an AM fungus-induced ethylene response factor gene GhWRI3 through yeast one-hybrid library screening and found that GhWRI3 activates the expression of GhGLN1.5 via AW-box element. These findings provide valuable insights into the molecular mechanisms of GhGLN1.5 expression in AM symbiosis, nitrogen assimilation, and Verticillium wilt resistance in cotton, suggesting potential strategies for regulating AM symbiosis in cotton through the WRI3-GLN1.5 module.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jingshang Wen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Shuangjie Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yiming He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Wan Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Wenbo Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Dongxiao Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Ruojun Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Qian Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Kai Cheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Zhang J, He B, Wang J, Wang Y, Zhang S, Li Y, Zhu S, Su W, Chen R, Anwar A, Song S. BcAMT1;2 interacts with BcLBD41 and BcMAMYB transcription factors during nitrogen metabolism in flowering Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109419. [PMID: 39765126 DOI: 10.1016/j.plaphy.2024.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025]
Abstract
Chinese cabbage is an important vegetable in southern China. Excessive nitrogen fertilizer application can lead to the accumulation of nitrate in edible organs, which affects food value. Hence, the cultivation of varieties with high nitrogen utilization efficiency (NUE) and low nitrate accumulation is essential for molecular breeding. In flowering Chinese cabbage, Ammonium transporter 1;2 (AMT1;2,XM_009113156.2) significantly promotes plant growth, while reducing the nitrate content and ultimately improving the nutritional value of the crop; however, the exact underlying regulatory mechanisms remain unclear. Here, we aimed to investigate the response pattern of BcAMT1;2 to nitrogen (N) deficiency and mixed ammonium-nitrate nutrition and the potential roles played by its interacting proteins, Lateral organ boundaries domain 41 (LBD41,XM_009120072.3) and Membrane-anchored MYB (MAMYB,XM_009103351.3), in N metabolism. We found that transient silencing and overexpression of BcAMT1;2 regulated the absorption and accumulation of ammonium (NH4+) and nitrate (NO3-) in flowering Chinese cabbage. BcLBD41 may directly induce BcAMT1;2 expression, thereby regulating NH4+ accumulation in flowering Chinese cabbages. The expression of BcLBD41 and BcAMT1;2 were downregulated during N-deficiency and upregulated after NH4+ supply restoration. Overexpression of BcLBD41 in Arabidopsis improved root and shoot growth under both LA (low-ammonium; 0.25 mM NH4+) and A/Ni (ammonium [NH4+]: nitrate [NO3-]; 0.25 mM:0.75 mM) conditions by facilitating the expression of AtAMT1;2 in transgenic plants, leading to enhanced NH4+ uptake and accumulation. The BcMAMYB protein serves as a transmembrane protein and has a strong interaction with the BcAMT1;2 protein, as well as inducing the expression of the BcAMT1;2 promoter. In the OE-BcMAMYB strain, the expression of both BcMAMYB and BcAMT1;2 were repressed under N-deficiency conditions, whereas after silencing BcMAMYB, the expression of BcAMT1;2 was not induced by ammonium. Our findings contribute to a more profound understanding of the regulatory mechanisms responsible for nitrogen absorption and accumulation in relation to BcAMT1;2.
Collapse
Affiliation(s)
- Jiewen Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bin He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jinmiao Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yamin Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijun Zhu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Fang L, Wang M, Chen X, Zhao J, Wang J, Liu J. Analysis of the AMT gene family in chili pepper and the effects of arbuscular mycorrhizal colonization on the expression patterns of CaAMT2 genes. BMC Genomics 2023; 24:158. [PMID: 36991328 DOI: 10.1186/s12864-023-09226-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Ammonium (NH4+) is a key nitrogen source supporting plant growth and development. Proteins in the ammonium transporter (AMT) family mediate the movement of NH4+ across the cell membrane. Although several studies have examined AMT genes in various plant species, few studies of the AMT gene family have been conducted in chili pepper. RESULTS Here, a total of eight AMT genes were identified in chili pepper, and their exon/intron structures, phylogenetic relationships, and expression patterns in response to arbuscular mycorrhizal (AM) colonization were explored. Synteny analyses among chili pepper, tomato, eggplant, soybean, and Medicago revealed that the CaAMT2;1, CaAMT2.4, and CaAMT3;1 have undergone an expansion prior to the divergence of Solanaceae and Leguminosae. The expression of six AMT2 genes was either up-regulated or down-regulated in response to AM colonization. The expression of CaAMT2;1/2;2/2;3 and SlAMT2;1/2;2/2;3 was significantly up-regulated in AM fungi-inoculated roots. A 1,112-bp CaAMT2;1 promoter fragment and a 1,400-bp CaAMT2;2 promoter fragment drove the expression of the β-glucuronidase gene in the cortex of AM roots. Evaluation of AM colonization under different NH4+ concentrations revealed that a sufficient, but not excessive, supply of NH4+ promotes the growth of chili pepper and the colonization of AM. Furthermore, we demonstrated that CaAMT2;2 overexpression could mediate NH4+ uptake in tomato plants. CONCLUSION In sum, our results provide new insights into the evolutionary relationships and functional divergence of chili pepper AMT genes. We also identified putative AMT genes expressed in AM symbiotic roots.
Collapse
Affiliation(s)
- Lei Fang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Miaomiao Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Xiao Chen
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong, China
| | - Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jianfei Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jianjian Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Nazir F, Mahajan M, Khatoon S, Albaqami M, Ashfaque F, Chhillar H, Chopra P, Khan MIR. Sustaining nitrogen dynamics: A critical aspect for improving salt tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1087946. [PMID: 36909406 PMCID: PMC9996754 DOI: 10.3389/fpls.2023.1087946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In the current changing environment, salt stress has become a major concern for plant growth and food production worldwide. Understanding the mechanisms of how plants function in saline environments is critical for initiating efforts to mitigate the detrimental effects of salt stress. Agricultural productivity is linked to nutrient availability, and it is expected that the judicious metabolism of mineral nutrients has a positive impact on alleviating salt-induced losses in crop plants. Nitrogen (N) is a macronutrient that contributes significantly to sustainable agriculture by maintaining productivity and plant growth in both optimal and stressful environments. Significant progress has been made in comprehending the fundamental physiological and molecular mechanisms associated with N-mediated plant responses to salt stress. This review provided an (a) overview of N-sensing, transportation, and assimilation in plants; (b) assess the salt stress-mediated regulation of N dynamics and nitrogen use- efficiency; (c) critically appraise the role of N in plants exposed to salt stress. Furthermore, the existing but less explored crosstalk between N and phytohormones has been discussed that may be utilized to gain a better understanding of plant adaptive responses to salt stress. In addition, the shade of a small beam of light on the manipulation of N dynamics through genetic engineering with an aim of developing salt-tolerant plants is also highlighted.
Collapse
Affiliation(s)
- Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moksh Mahajan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Mohammed Albaqami
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | | | | |
Collapse
|
6
|
Zhou T, Wu P, Yue C, Huang J, Zhang Z, Hua Y. Transcriptomic Dissection of Allotetraploid Rapeseed (Brassica napus L.) in Responses to Nitrate and Ammonium Regimes and Functional Analysis of BnaA2.Gln1;4 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:755-769. [PMID: 35325216 DOI: 10.1093/pcp/pcac037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Plant roots acquire nitrogen predominantly as two inorganic forms, nitrate (NO3-) and ammonium (NH4+), to which plants respond differentially. Rapeseed (Brassica napus L.) is an important oil-crop species with very low nitrogen-use efficiency (NUE), the regulatory mechanism of which was elusive due to the vastness and complexity of the rapeseed genome. In this study, a comparative transcriptomic analysis was performed to investigate the differential signatures of nitrogen-starved rapeseed in responses to NO3- and NH4+ treatments and to identify the key genes regulating rapeseed NUE. The two nitrogen sources differentially affected the shoot and root transcriptome profiles, including those of genome-wide nitrogen transporter and transcription factor (TF)-related genes. Differential expression profiling showed that BnaA6.NRT2;1 and BnaA7.AMT1;3 might be the core transporters responsible for efficient NO3- and NH4+ uptake, respectively; the TF genes responsive to inorganic nitrogen, specifically responding to NO3-, and specifically responsive to NH4+ were also identified. The genes which were commonly and most significantly affected by both NO3- and NH4+ treatments were related to glutamine metabolism. Among the glutamine synthetase (GS) family genes, we found BnaA2.Gln1;4, significantly responsive to low-nitrogen conditions and showed higher transcription abundance and GS activity in the leaf veins, flower sepals, root cortex and stele, silique petiole and stem tissues. These characters were significantly different from those of AtGln1;4. The heterologous overexpression of BnaA2.Gln1;4 in Arabidopsis increased plant biomass, NUE, GS activity and total amino acid concentrations under both sufficient- and low-nitrogen conditions. Overall, this study provided novel information about the genes involved in the adaptation to different nitrogen regimes and identified some promising candidate genes for enhancing NUE in rapeseed.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Pengjia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenhua Zhang
- College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 430128, PR China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
7
|
Ceasar SA, Maharajan T, Hillary VE, Ajeesh Krishna TP. Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol Adv 2022; 59:107963. [PMID: 35452778 DOI: 10.1016/j.biotechadv.2022.107963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
We need to improve food production to feed the ever growing world population especially in a changing climate. Nutrient deficiency in soils is one of the primary bottlenecks affecting the crop production both in developed and developing countries. Farmers are forced to apply synthetic fertilizers to improve the crop production to meet the demand. Understanding the mechanism of nutrient transport is helpful to improve the nutrient-use efficiency of crops and promote the sustainable agriculture. Many transporters involved in the acquisition, export and redistribution of nutrients in plants are characterized. In these studies, heterologous systems like yeast and Xenopus were most frequently used to study the transport function of plant nutrient transporters. CRIPSR/Cas system introduced recently has taken central stage for efficient genome editing in diverse organisms including plants. In this review, we discuss the key nutrient transporters involved in the acquisition and redistribution of nutrients from soil. We draw insights on the possible application CRISPR/Cas system for improving the nutrient transport in plants by engineering key residues of nutrient transporters, transcriptional regulation of nutrient transport signals, engineering motifs in promoters and transcription factors. CRISPR-based engineering of plant nutrient transport not only helps to study the process in native plants with conserved regulatory system but also aid to develop non-transgenic crops with better nutrient use-efficiency. This will reduce the application of synthetic fertilizers and promote the sustainable agriculture strengthening the food and nutrient security.
Collapse
Affiliation(s)
| | | | - V Edwin Hillary
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
8
|
Li Y, Li R, Han Z, Wang H, Zhou S, Li Y, Wang Y, Qi J, Ow DW. Recombinase-mediated gene stacking in cotton. PLANT PHYSIOLOGY 2022; 188:1852-1865. [PMID: 35088863 PMCID: PMC8968315 DOI: 10.1093/plphys/kiac005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 05/24/2023]
Abstract
Site-specific gene stacking could reduce the number of segregating loci and expedite the introgression of transgenes from experimental lines to field lines. Recombinase-mediated site-specific gene stacking provides a flexible and efficient solution, but this approach requires a recombinase recognition site in the genome. Here, we describe several cotton (Gossypium hirsutum cv. Coker 312) target lines suitable for Mycobacteriophage Bxb1 recombinase-mediated gene stacking. Obtained through the empirical screening of random insertion events, each of these target lines contains a single intact copy of the target construct with precise sequences of RS2, lox, and attP sites that is not inserted within or close to a known gene or near a centromere and shows good expression of the reporter gene gfp. Gene stacking was tested with insertion of different combinations of three candidate genes for resistance to verticillium wilt into three cotton target lines: CTS1, CTS3, and CTS4. Nine site-specific integration events were recovered from 95 independently transformed embryogenic calluses. Southern and DNA sequence analyses of regenerated plants confirmed precise site-specific integration, and resistance to verticillium wilt was observed for plant CTS1i3, which has a single precise copy of site-specifically integrated DNA. These cotton target lines can serve as foundation lines for recombinase-mediated gene stacking to facilitate precise DNA integration and introgression to field cultivars.
Collapse
Affiliation(s)
- Yamei Li
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyu Li
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhiguo Han
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Haitang Wang
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Sixian Zhou
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqing Li
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yumei Wang
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junsheng Qi
- Department of Plant Science, State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
9
|
Wang Y, Xuan YM, Wang SM, Fan DM, Wang XC, Zheng XQ. Genome-wide identification, characterization, and expression analysis of the ammonium transporter gene family in tea plants (Camellia sinensis L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13646. [PMID: 35129836 DOI: 10.1111/ppl.13646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
As a preferred nitrogen form, ammonium (NH4 + ) transport via specific transporters is particularly important for the growth and development of tea plants (Camellia sinensis L.). However, our understanding of the functions of the AMT family in tea plants is limited. We identified and named 16 putative AMT genes according to phylogenetic analysis. All CsAMT genes were divided into three groups, distributed on 12 chromosomes with only one segmental duplication repetition. The CsAMT genes showed different expression levels in different organs, and most of them were expressed mainly in the apical buds and roots. Complementation analysis of yeast mutants showed that CsAMTs restored the uptake of NH4 + . This study provides insights into the genome-wide distribution and spatial expression of AMT genes in tea plants.
Collapse
Affiliation(s)
- Yu Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yi-Min Xuan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shu-Mao Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dong-Mei Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao-Chang Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Qiang Zheng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Li W, Feng Z, Zhang C. Ammonium transporter PsAMT1.2 from Populus simonii functions in nitrogen uptake and salt resistance. TREE PHYSIOLOGY 2021; 41:2392-2408. [PMID: 34002233 DOI: 10.1093/treephys/tpab071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Ammonium (NH4+) is a primary nitrogen (N) source for many species, and NH4+ uptake is mediated by various transporters. However, the effects of NH4+ transporters on N uptake and metabolism under salt stress remain unclear. In the present study, we investigated the expression characteristics and transport function of PsAMT1.2 in Populus simonii and its role in ammonium uptake and metabolism under salt stress. PsAMT1.2 was localized in the plasma membrane highly expressed in the roots. Heterologous functionality tests demonstrated that PsAMT1.2 mediates NH4+ permeation across the plasma membrane in yeast mutants, restoring growth. A short-term NH4+ uptake experiment showed that PsAMT1.2 is a high-affinity NH4+ transporter with a Km value of 80.603 μM for NH4+. Compared with the wild type (WT, Populus tremula × Populus alba INRA 717-IB4 genotype), PsAMT1.2-overexpressing transgenic poplar grew better, with higher increases in stem height and relative chlorophyll content under both control and salt-stress conditions. PsAMT1.2 overexpression significantly increased the total NH4+ concentration and total N of whole plants under salt stress. The glutamate synthase (GS), glutamine synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities and the total amino acids largely increased in the roots of PsAMT1.2-overexpressing transgenic plants compared with the WT plants under control conditions, suggesting that PsAMT1.2 overexpression promotes NH4+ assimilation and metabolism in poplar roots. Consistent with the increased total amino acid content, GS1.3, GS2 and Fd-GOGAT expression was upregulated in the roots and leaves of the PsAMT1.2-overexpressing transgenic plants compared with the WT plants under salt stress. Collectively, PsAMT1.2 encodes a high-affinity NH4+ transporter crucial to NH4+ uptake and metabolism under salt stress.
Collapse
Affiliation(s)
- Wenxin Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 26 Xinong Road, Yangling 712100, China
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zimao Feng
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Chunxia Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 26 Xinong Road, Yangling 712100, China
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
11
|
Liu L, Bi XY, Sheng S, Gong YY, Pu WX, Ke J, Huang PJ, Liang YL, Liu LH. Evidence that exogenous urea acts as a potent cue to alleviate ammonium-inhibition of root system growth of cotton plant (Gossypium hirsutum). PHYSIOLOGIA PLANTARUM 2021; 171:137-150. [PMID: 32997341 DOI: 10.1111/ppl.13222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/24/2023]
Abstract
Many plants grown with low-millimolar concentration of NH4 + as a sole nitrogen source develop NH4 + -toxicity symptoms. To date, crucial molecular identities and a practical approach involved in the improvement of plant NH4 + -tolerance remain largely unknown. By phenotyping of upland cotton grown on varied nitrogen forms, we came across a phenomenon that caused sub-millimolar concentrations of urea (e.g., up 50 μM) to repress the growth inhibition of roots and whole plant cultivated in a NH4 + -containing nutrient solution. A growth-recovery assay revealed that the relief in NH4 + -inhibited growth required only a short-term exposure (≧12 h) of the roots to urea, implying that urea could elicit an internal signaling and be involved in antagonizing NH4 + -sensitivity. Intriguingly, split-root experiments demonstrated that low urea occurrence in one root-half could efficaciously stimulate not only supplied root but also the root-half grown in NH4 + -solution without urea, indicating the existence of urea-triggered local and systemic long-distance signaling. In the split-root experiment we also observed high arginase activity, strong arginine reduction and remarkable upregulation of polyamine biosynthesis-related genes (ADC1/2, SPDS and SPMS). Therefore, we suggest that external urea might serve as an effective cue (signal molecule) in an arginine-/polyamine-related process for ameliorating NH4 + -suppressed root growth, providing a novel aspect for deeper exploring and understanding plant NH4 + -tolerance.
Collapse
Affiliation(s)
- Lu Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Xin-Yuan Bi
- Institute of Agricultural Resources and Economics, Shanxi Agricultural University, Taiyuan, China
| | - Song Sheng
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Yuan-Yong Gong
- Biological and Chemical Engineering College, Panzhihua University, Panzhihua, China
| | - Wen-Xuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Jie Ke
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Ping-Jun Huang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Yi-Long Liang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
12
|
Ke J, Pu WX, Wang H, Liu LH, Sheng S. Phenotypical evidence of effective amelioration of ammonium-inhibited plant (root) growth by exogenous low urea. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153306. [PMID: 33129078 DOI: 10.1016/j.jplph.2020.153306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 05/27/2023]
Abstract
Ammonium and nitrate are major soil inorganic-nitrogen sources for plant growth, but many species cultivated with even low millimolar NH4+ as a sole N form display a growth retardation. To date, critical biological components and applicable approaches involved in the effective enhancement of NH4+ tolerance remain to be thoroughly explored. Here, we report phenotypical traits of urea-dependent improvement of NH4+-suppressed plant/root growth. Urea at 0.1 mM was sufficient to remarkably stimulate NH4+ (3 mM)-fed cotton growth, showing a 2.5∼4-fold increase in shoot- and root-biomass and total root-length, 20 % higher GS activity, 18 % less NH4+-accumulation in roots, and a comparable plant total-N content compared to the control, implying a novel role for urea in cotton NH4+detoxification. A similar phenomenon was observed in tobacco and rice. Moreover, comparisons between twelve NH4+-grown Arabidopsis accessions revealed a great degree of natural variation in their root-growth response to low urea, with WAR and Blh-1 exhibiting the most significant increase in primary- and lateral-root length and numbers, and Sav-0 and Edi-0 being the most insensitive. Such phenotypical evidence suggests a common ability of plants to accommodate NH4+-stress by responding to exogenous urea, providing a novel aspect for further understanding the process of urea-dependent plant NH4+ tolerance.
Collapse
Affiliation(s)
- Jie Ke
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
| | - Wen-Xuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha 410007, China
| | - Hui Wang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China.
| | - Song Sheng
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Hao DL, Zhou JY, Yang SY, Qi W, Yang KJ, Su YH. Function and Regulation of Ammonium Transporters in Plants. Int J Mol Sci 2020; 21:E3557. [PMID: 32443561 PMCID: PMC7279009 DOI: 10.3390/ijms21103557] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ammonium transporter (AMT)-mediated acquisition of ammonium nitrogen from soils is essential for the nitrogen demand of plants, especially for those plants growing in flooded or acidic soils where ammonium is dominant. Recent advances show that AMTs additionally participate in many other physiological processes such as transporting ammonium from symbiotic fungi to plants, transporting ammonium from roots to shoots, transferring ammonium in leaves and reproductive organs, or facilitating resistance to plant diseases via ammonium transport. Besides being a transporter, several AMTs are required for the root development upon ammonium exposure. To avoid the adverse effects of inadequate or excessive intake of ammonium nitrogen on plant growth and development, activities of AMTs are fine-tuned not only at the transcriptional level by the participation of at least four transcription factors, but also at protein level by phosphorylation, pH, endocytosis, and heterotrimerization. Despite these progresses, it is worth noting that stronger growth inhibition, not facilitation, unfortunately occurs when AMT overexpression lines are exposed to optimal or slightly excessive ammonium. This implies that a long road remains towards overcoming potential limiting factors and achieving AMT-facilitated yield increase to accomplish the goal of persistent yield increase under the present high nitrogen input mode in agriculture.
Collapse
Affiliation(s)
- Dong-Li Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Jin-Yan Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Shun-Ying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Wei Qi
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China;
| | - Ke-Jun Yang
- Agro-Tech Extension and Service Center, Zhucheng 262200, China;
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| |
Collapse
|