1
|
Aliakbari M, Tahmasebi S, Sisakht JN. Jasmonic acid improves barley photosynthetic efficiency through a possible regulatory module, MYC2-RcaA, under combined drought and salinity stress. PHOTOSYNTHESIS RESEARCH 2024; 159:69-78. [PMID: 38329704 DOI: 10.1007/s11120-023-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
The combined stress of drought and salinity is prevalent in various regions of the world, affects several physiological and biochemical processes in crops, and causes their yield to decrease. Photosynthesis is one of the main processes that are disturbed by combined stress. Therefore, improving the photosynthetic efficiency of crops is one of the most promising strategies to overcome environmental stresses, making studying the molecular basis of regulation of photosynthesis a necessity. In this study, we sought a potential mechanism that regulated a major component of the combined stress response in the important crop barley (Hordeum vulgare L.), namely the Rubisco activase A (RcaA) gene. Promoter analysis of the RcaA gene led to identifying Jasmonic acid (JA)-responsive elements with a high occurrence. Specifically, a Myelocytomatosis oncogenes 2 (MYC2) transcription factor binding site was highlighted as a plausible functional promoter motif. We conducted a controlled greenhouse experiment with an abiotic stress-susceptible barley genotype and evaluated expression profiling of the RcaA and MYC2 genes, photosynthetic parameters, plant water status, and cell membrane damages under JA, combined drought and salinity stress (CS) and JA + CS treatments. Our results showed that applying JA enhances barley's photosynthetic efficiency and water relations and considerably compensates for the adverse effects of combined stress. Significant association was observed among gene expression profiles and evaluated physiochemical characteristics. The results showed a plausible regulatory route through the JA-dependent MYC2-RcaA module involved in photosynthesis regulation and combined stress tolerance. These findings provide valuable knowledge for further functional studies of the regulation of photosynthesis under abiotic stresses toward the development of multiple-stress-tolerant crops.
Collapse
Affiliation(s)
- Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran.
| | - Sirous Tahmasebi
- Department of Seed and Plant Improvement Research, Fars Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | - Javad Nouripour Sisakht
- Department of Plant Production and Genetics, College of Agricultural Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
2
|
Liang J, Yan Z, Zhang Y, Xu H, Song W. Proteomics analysis of resistance mechanism of Trichoderma harzianum under U(VI) stress. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107303. [PMID: 37783189 DOI: 10.1016/j.jenvrad.2023.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Trichoderma harzianum has a certain resistance to Hexavalent Uranium (U(VI)), but its resistance mechanism is unknown. Based on proteomics sequencing using DIA mode, differentially expressed proteins (DEPs) of Trichoderma harzianum under U(VI) stress were identified. GO enrichment, KEGG annotation analysis and DEPs annotation were performed. The results showed that 8 DEPs, 8 DEPs and 15 DEPs were obtained in the low-dose, medium-dose and high-dose groups, respectively. The functional classification of GO demonstrated that DEPs were associated with 17 molecular functions, 5 biological processes, and 5 cellular components. Furthermore, DEPs were enriched in transport and catabolism, energy metabolism, translation, and signal transduction. These findings showed that Trichoderma harzianum was significantly changed in protein expression and signaling pathway after U(VI) exposure. Therefore, these results have provided Trichoderma harzianum with a theoretical background that can be applied to environmental cleanup.
Collapse
Affiliation(s)
- Jun Liang
- Jianghuai College of Anhui University, Hefei, 230031, China.
| | - Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Huan Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, China.
| |
Collapse
|
3
|
Sharma N, Raman H, Wheeler D, Kalenahalli Y, Sharma R. Data-driven approaches to improve water-use efficiency and drought resistance in crop plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111852. [PMID: 37659733 DOI: 10.1016/j.plantsci.2023.111852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
With the increasing population, there lies a pressing demand for food, feed and fibre, while the changing climatic conditions pose severe challenges for agricultural production worldwide. Water is the lifeline for crop production; thus, enhancing crop water-use efficiency (WUE) and improving drought resistance in crop varieties are crucial for overcoming these challenges. Genetically-driven improvements in yield, WUE and drought tolerance traits can buffer the worst effects of climate change on crop production in dry areas. While traditional crop breeding approaches have delivered impressive results in increasing yield, the methods remain time-consuming and are often limited by the existing allelic variation present in the germplasm. Significant advances in breeding and high-throughput omics technologies in parallel with smart agriculture practices have created avenues to dramatically speed up the process of trait improvement by leveraging the vast volumes of genomic and phenotypic data. For example, individual genome and pan-genome assemblies, along with transcriptomic, metabolomic and proteomic data from germplasm collections, characterised at phenotypic levels, could be utilised to identify marker-trait associations and superior haplotypes for crop genetic improvement. In addition, these omics approaches enable the identification of genes involved in pathways leading to the expression of a trait, thereby providing an understanding of the genetic, physiological and biochemical basis of trait variation. These data-driven gene discoveries and validation approaches are essential for crop improvement pipelines, including genomic breeding, speed breeding and gene editing. Herein, we provide an overview of prospects presented using big data-driven approaches (including artificial intelligence and machine learning) to harness new genetic gains for breeding programs and develop drought-tolerant crop varieties with favourable WUE and high-yield potential traits.
Collapse
Affiliation(s)
- Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia.
| | - Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia
| | - Yogendra Kalenahalli
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324, India
| | - Rita Sharma
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
4
|
Shamloo-Dashtpagerdi R, Lindlöf A, Tahmasebi S. Evidence that miR168a contributes to salinity tolerance of Brassica rapa L. via mediating melatonin biosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13790. [PMID: 36169653 DOI: 10.1111/ppl.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Melatonin is a master regulator of diverse biological processes, including plant's abiotic stress responses and tolerance. Despite the extensive information on the role of melatonin in response to abiotic stress, how plants regulate endogenous melatonin content under stressful conditions remains largely unknown. In this study, we computationally mined Expressed Sequence Tag (EST) libraries of salinity-exposed Chinese cabbage (Brassica rapa) to identify the most reliable differentially expressed miRNA and its target gene(s). In light of these analyses, we found that miR168a potentially targets a key melatonin biosynthesis gene, namely O-METHYLTRANSFERASE 1 (OMT1). Accordingly, molecular and physiochemical evaluations were performed in a separate salinity experiment using contrasting B. rapa genotypes. Then, the association between B. rapa salinity tolerance and changes in measured molecular and physiochemical characteristics was determined. Results indicated that the expression profiles of miR168a and OMT1 significantly differed between B. rapa genotypes. Moreover, the expression profiles of miR168a and OMT1 significantly correlated with more melatonin content, robust antioxidant activities, and better ion homeostasis during salinity stress. Our results suggest that miR168a plausibly mediates melatonin biosynthesis, mainly through the OMT1 gene, under salinity conditions and thereby contributes to the salinity tolerance of B. rapa. To our knowledge, this is the first report on the role of miR168a and OMT1 in B. rapa salinity response.
Collapse
Affiliation(s)
| | | | - Sirous Tahmasebi
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
5
|
Yue JY, Wang YJ, Jiao JL, Wang WW, Wang HZ. The Metacaspase TaMCA-Id Negatively Regulates Salt-Induced Programmed Cell Death and Functionally Links With Autophagy in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:904933. [PMID: 35812918 PMCID: PMC9260269 DOI: 10.3389/fpls.2022.904933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Metacaspases (MCAs), a family of caspase-like proteins, are important regulators of programmed cell death (PCD) in plant defense response. Autophagy is an important regulator of PCD. This study explored the underlying mechanism of the interaction among PCD, MCAs, and autophagy and their impact on wheat response to salt stress. In this study, the wheat salt-responsive gene TaMCA-Id was identified. The open reading frame (ORF) of TaMCA-Id was 1,071 bp, coding 356 amino acids. The predicted molecular weight and isoelectric point were 38,337.03 Da and 8.45, respectively. TaMCA-Id had classic characteristics of type I MCAs domains, a typical N-terminal pro-domain rich in proline. TaMCA-Id was mainly localized in the chloroplast and exhibited nucleocytoplasmictrafficking under NaCl treatment. Increased expression of TaMCA-Id in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. Silencing of TaMCA-Id enhanced sensitivity of wheat seedlings to NaCl stress. Under NaCl stress, TaMCA-Id-silenced seedlings exhibited a reduction in activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher accumulation of H2O2 and O 2 . - , more serious injury to photosystem II (PSII), increase in PCD level, and autophagy activity in leaves of wheat seedlings. These results indicated that TaMCA-Id functioned in PCD through interacting with autophagy under NaCl stress, which could be used to improve the salt tolerance of crop plants.
Collapse
|
6
|
Basak S, Kundu P. Plant metacaspases: Decoding their dynamics in development and disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:50-63. [PMID: 35390704 DOI: 10.1016/j.plaphy.2022.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/02/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Plant metacaspases were evolved in parallel to well-characterized animal counterpart caspases and retained the similar histidine-cysteine catalytic dyad, leading to functional congruity between these endopeptidases. Although phylogenetic relatedness of the catalytic domain and functional commonality placed these proteases in the caspase family, credible counterarguments predominantly about their distinct substrate specificity raised doubts about the classification. Metacaspases are involved in regulating the PCD during development as well as in senescence. Balancing acts of metacaspase activity also dictate cell fate during defense upon the perception of adverse environmental cues. Accordingly, their activity is tightly regulated, while suppressing spurious activation, by a combination of genetic and post-translational modifications. Structural insights from recent studies provided vital clues on the functionality. This comprehensive review aims to explore the origin of plant metacaspases, and their regulatory and functional diversity in different plants while discussing their analogy to mammalian caspases. Besides, we have presented various modern methodologies for analyzing the proteolytic activity of these indispensable molecules in the healthy or stressed life of a plant. The review would serve as a repository of all the available pieces of evidence indicating metacaspases as the key regulator of PCD across the plant kingdom and highlight the prospect of studying metacaspases for their inclusion in a crop improvement program.
Collapse
Affiliation(s)
- Shrabani Basak
- Division of Plant Biology, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
7
|
Shamloo-Dashtpagerdi R, Aliakbari M, Lindlöf A, Tahmasebi S. A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. PLANTA 2022; 255:99. [PMID: 35386021 DOI: 10.1007/s00425-022-03885-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Enhanced levels of endogenous melatonin in the root of wheat, mainly through the OMT1 gene, augment the antioxidant system, reestablish redox homeostasis and are associated with combined stress tolerance. A systems biology approach, including a collection of computational analyses and experimental assays, led us to uncover some aspects of a poorly understood phenomenon, namely wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Accordingly, a cross-study comparison of stress experiments was performed via a meta-analysis of Expressed Sequence Tags (ESTs) data from wheat roots to uncover the overlapping gene network of drought and salinity stresses. Identified differentially expressed genes were functionally annotated by gene ontology enrichment analysis and gene network analysis. Among those genes, O-methyl transferase 1 (OMT1) was highlighted as a more important (hub) gene in the dual-stress response gene network. Afterwards, the potential roles of OMT1 in mediating physiochemical indicators of stress tolerance were investigated in two wheat genotypes differing in abiotic stress tolerance. Regression analysis and correspondence analysis (CA) confirmed that the expression profiles of the OMT1 gene and variations in melatonin content, antioxidant enzyme activities, proline accumulation, H2O2 and malondialdehyde (MDA) contents are significantly associated with combined stress tolerance. These results reveal that the OMT1 gene may contribute to wheat combined drought and salinity stress tolerance through augmenting the antioxidant system and re-establishing redox homeostasis, probably via the regulation of melatonin biosynthesis as a master regulator molecule. Our findings provide new insights into the roles of melatonin in wheat combined drought and salinity stress tolerance and suggest a novel plausible regulatory node through the OMT1 gene to improve multiple-stress tolerant crops.
Collapse
Affiliation(s)
| | - Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| | | | - Sirus Tahmasebi
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
8
|
Park JR, Kim EG, Jang YH, Jan R, Farooq M, Ubaidillah M, Kim KM. Applications of CRISPR/Cas9 as New Strategies for Short Breeding to Drought Gene in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:850441. [PMID: 35283882 PMCID: PMC8908215 DOI: 10.3389/fpls.2022.850441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 05/25/2023]
Abstract
Recent unpredictable climate change is the main reason for the decline in rice yield. In particular, drought stress is a major constraint in reducing yield and quality for rice at rainfed agriculture areas, such as Asia and South America. CRISPR/Cas9 provides an effective solution for gene function study and molecular breeding due to specific editing of targeted genome sequences. In addition, CRISPR/Cas9 application can significantly reduce the time required to develop new cultivars with improved traits compared to conventional complex and time-consuming breeding. Here, drought-induced gene Oryza sativa Senescence-associated protein (OsSAP) was edited by CRISPR/Cas9. To investigate the possible role of OsSAP in drought stress, genome-editing plants were subjected to drought stress until the soil moisture content reached 20%, and the reactive oxygen species (ROS) scavenging efficiency of genome-editing plants were decreased. When the genome-editing plants were subjected to drought stress, survival rate, shoot length, root length, content of chlorophyll number of tiller, and 1,000-grain weight decreased, and more H2O2 and O2 - were detected in leaves. In addition, expression levels of several critical stress-related transcription factors were decreased in the OsSAP genome-editing plant. These results suggest that OsSAP function as a positive regulator during drought stress response in rice. We analyzed the expression of OsSAP and Cas9 in T0 and T1 plants as well as T2 seeds. As the course of generation advancement progressed, Cas9 expression remained stable or weakened but the OsSAP expression was continuously removed from the T0 plant. The coefficient of variation (CV) in both T1 plants and T2 seeds was lower than 5%. Overall, our results suggest that CRISPR/Cas9 could be a novel and important tool for efficiently generating specific and inheritable targeted genome editing in rice, with short breeding cycles.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Eun-Gyeong Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Yoon-Hee Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Muhammad Farooq
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Mohammad Ubaidillah
- Department of Agronomy, Faculty of Agriculture, Jember University, Jember, Indonesia
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Aliakbari M, Cohen SP, Lindlöf A, Shamloo-Dashtpagerdi R. Rubisco activase A (RcaA) is a central node in overlapping gene network of drought and salinity in Barley (Hordeum vulgare L.) and may contribute to combined stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:248-258. [PMID: 33652257 DOI: 10.1016/j.plaphy.2021.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Co-occurrence of abiotic stresses, especially drought and salinity, is a natural phenomenon in field conditions and is worse for crop production than any single stress. Nowadays, rigorous methods of meta-analysis and systems biology have made it possible to perform cross-study comparisons of single stress experiments, which can uncover main overlapping mechanisms underlying tolerance to combined stress. In this study, a meta-analysis of RNA-Seq data was conducted to obtain the overlapping gene network of drought and salinity stresses in barley (Hordeum vulgare L.), which identified Rubisco activase A (RcaA) as a hub gene in the dual-stress response. Thereafter, a greenhouse experiment was carried out using two barley genotypes with different abiotic stress tolerance and evaluated several physiochemical properties as well as the expression profile and protein activity of RcaA. Finally, machine learning analysis was applied to uncover relationships among combined stress tolerance and evaluated properties. We identified 441 genes which were differentially expressed under both drought and salinity stress. Results revealed that the photosynthesis pathway and, in particular, the RcaA gene are major components of the dual-stress responsive transcriptome. Comparative physiochemical and molecular evaluations further confirmed that enhanced photosynthesis capability, mainly through regulation of RcaA expression and activity as well as accumulation of proline content, have a significant association with combined drought and salinity stress tolerance in barley. Overall, our results clarify the importance of RcaA in combined stress tolerance and may provide new insights for future investigations.
Collapse
Affiliation(s)
- Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| | - Stephen P Cohen
- Department of Plant Pathology, The Ohio State University, OH, 43210, USA
| | | | | |
Collapse
|
10
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|