1
|
Wei L, Ren X, Qin L, Zhang R, Cui M, Xia G, Liu S. TaWRKY55-TaPLATZ2 module negatively regulate saline-alkali stress tolerance in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:19-34. [PMID: 39436112 DOI: 10.1111/jipb.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
Saline-alkaline soils are a major environmental problem that limit plant growth and crop productivity. Plasma membrane H+-ATPases and the salt overly sensitive (SOS) signaling pathway play important roles in plant responses to saline-alkali stress. However, little is known about the functional genes and mechanisms regulating the transcription of H+-ATPases and SOS pathway genes under saline-alkali stress. In the present study, we identified that the plant AT-rich sequence and zinc-binding (TaPLATZ2) transcription factor are involved in wheat response to saline-alkali stress by directly suppressing the expression of TaHA2/TaSOS3. The knockdown of TaPLATZ2 enhances salt and alkali stress tolerance, while overexpression of TaPLATZ2 leads to salt and alkali stress sensitivity in wheat. In addition, TaWRKY55 directly upregulated the expression of TaPLATZ2 during saline-alkali stress. Through knockdown and overexpression of TaWRKY55 in wheat, TaWRKY55 was shown to negatively modulate salt and alkali stress tolerance. Genetic analyses confirmed that TaPLATZ2 functions downstream of TaWRKY55 in response to salt and alkaline stresses. These findings provide a TaWRKY55-TaPLATZ2-TaHA2/TaSOS3 regulatory module that regulates wheat responses to saline-alkali stress.
Collapse
Affiliation(s)
- Lin Wei
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xinman Ren
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lumin Qin
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Rong Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Minghan Cui
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
De Y, Yan W, Gao F, Mu H. Unraveling the signaling pathways of phytohormones underlying salt tolerance in Elymus sibiricus: A transcriptomic and metabolomic approach. Genomics 2024; 116:110893. [PMID: 38944355 DOI: 10.1016/j.ygeno.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in Elymus sibiricus, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in Elymus sibiricus under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of Elymus sibiricus' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of Elymus sibiricus to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in Elymus sibiricus and provide a foundation for breeding salt-resistant varieties.
Collapse
Affiliation(s)
- Ying De
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China.
| | - Weihong Yan
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Fengqin Gao
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Huaibin Mu
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| |
Collapse
|
3
|
Feng Z, Xu Y, Xie Z, Yang Y, Lu G, Jin Y, Wang M, Liu M, Yang H, Li W, Liang Z. Overexpression of Abscisic Acid Biosynthesis Gene OsNCED3 Enhances Survival Rate and Tolerance to Alkaline Stress in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1713. [PMID: 38931145 PMCID: PMC11207436 DOI: 10.3390/plants13121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Alkaline stress with high pH levels could significantly influence plant growth and survival. The enzyme 9-cis-epoxycarotenoid dioxygenase (NCED) serves as a critical bottleneck in the biosynthesis of abscisic acid (ABA), making it essential for regulating stress tolerance. Here, we show that OsNCED3-overexpressing rice lines have increased ABA content by up to 50.90% and improved transcription levels of numerous genes involved in stress responses that significantly enhance seedling survival rates. Overexpression of OsNCED3 increased the dry weight contents of the total chlorophyll, proline, soluble sugar, starch, and the activities of antioxidant enzymes of rice seedlings, while reducing the contents of O2·-, H2O2, and malondialdehyde under hydroponic alkaline stress conditions simulated by 10, 15, and 20 mmol L-1 of Na2CO3. Additionally, the OsNCED3-overexpressing rice lines exhibited a notable increase in the expression of OsNCED3; ABA response-related genes OsSalT and OsWsi18; ion homeostasis-related genes OsAKT1, OsHKT1;5, OsSOS1, and OsNHX5; and ROS scavenging-related genes OsCu/Zn-SOD, OsFe-SOD, OsPOX1, OsCATA, OsCATB, and OsAPX1 in rice seedling leaves. The results of these findings suggest that overexpression of OsNCED3 upregulates endogenous ABA levels and the expression of stress response genes, which represents an innovative molecular approach for enhancing the alkaline tolerance of rice seedlings.
Collapse
Affiliation(s)
- Zhonghui Feng
- College of Life Science, Baicheng Normal University, Baicheng 137000, China; (Z.F.); (Z.X.); (Y.Y.)
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
| | - Yang Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
| | - Zhiming Xie
- College of Life Science, Baicheng Normal University, Baicheng 137000, China; (Z.F.); (Z.X.); (Y.Y.)
| | - Yaqiong Yang
- College of Life Science, Baicheng Normal University, Baicheng 137000, China; (Z.F.); (Z.X.); (Y.Y.)
| | - Guanru Lu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
| | - Yangyang Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
| | - Mingming Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Farmland Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Miao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Farmland Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Haoyu Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Farmland Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Farmland Ecosystem National Observation and Research Station, Da’an 131317, China
| | - Zhengwei Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.X.); (G.L.); (Y.J.); (M.W.); (M.L.); (H.Y.)
- Jilin Da’an Farmland Ecosystem National Observation and Research Station, Da’an 131317, China
| |
Collapse
|
4
|
Wang HR, Han SM, Wang DH, Zhao ZR, Ling H, Yu YN, Liu ZY, Gai YP, Ji XL. Unraveling the Contribution of MulSOS2 in Conferring Salinity Tolerance in Mulberry ( Morus atropurpurea Roxb). Int J Mol Sci 2024; 25:3628. [PMID: 38612440 PMCID: PMC11012014 DOI: 10.3390/ijms25073628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Salinity is one of the most serious threats to sustainable agriculture. The Salt Overly Sensitive (SOS) signaling pathway plays an important role in salinity tolerance in plants, and the SOS2 gene plays a critical role in this pathway. Mulberry not only has important economic value but also is an important ecological tree species; however, the roles of the SOS2 gene associated with salt stress have not been reported in mulberry. To gain insight into the response of mulberry to salt stress, SOS2 (designated MulSOS2) was cloned from mulberry (Morus atropurpurea Roxb), and sequence analysis of the amino acids of MulSOS2 showed that it shares some conserved domains with its homologs from other plant species. Our data showed that the MulSOS2 gene was expressed at different levels in different tissues of mulberry, and its expression was induced substantially not only by NaCl but also by ABA. In addition, MulSOS2 was exogenously expressed in Arabidopsis, and the results showed that under salt stress, transgenic MulSOS2 plants accumulated more proline and less malondialdehyde than the wild-type plants and exhibited increased tolerance to salt stress. Moreover, the MulSOS2 gene was transiently overexpressed in mulberry leaves and stably overexpressed in the hairy roots, and similar results were obtained for resistance to salt stress in transgenic mulberry plants. Taken together, the results of this study are helpful to further explore the function of the MulSOS2 gene, which provides a valuable gene for the genetic breeding of salt tolerance in mulberry.
Collapse
Affiliation(s)
- Hai-Rui Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (H.-R.W.); (S.-M.H.); (D.-H.W.); (Z.-Y.L.)
| | - Sheng-Mei Han
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (H.-R.W.); (S.-M.H.); (D.-H.W.); (Z.-Y.L.)
| | - Dong-Hao Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (H.-R.W.); (S.-M.H.); (D.-H.W.); (Z.-Y.L.)
| | - Zhen-Rui Zhao
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (Z.-R.Z.); (H.L.); (Y.-N.Y.)
| | - Hui Ling
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (Z.-R.Z.); (H.L.); (Y.-N.Y.)
| | - Yun-Na Yu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (Z.-R.Z.); (H.L.); (Y.-N.Y.)
| | - Zhao-Yang Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (H.-R.W.); (S.-M.H.); (D.-H.W.); (Z.-Y.L.)
| | - Ying-Ping Gai
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (Z.-R.Z.); (H.L.); (Y.-N.Y.)
| | - Xian-Ling Ji
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (H.-R.W.); (S.-M.H.); (D.-H.W.); (Z.-Y.L.)
| |
Collapse
|
5
|
Zhang Y, Yu S, Niu P, Su L, Jiao X, Sui X, Shi Y, Liu B, Lu W, Zhu H, Jiang X. RcMYB8 enhances salt and drought tolerance in rose (Rosa chinensis) by modulating RcPR5/1 and RcP5CS1. MOLECULAR HORTICULTURE 2024; 4:3. [PMID: 38282004 PMCID: PMC10823735 DOI: 10.1186/s43897-024-00080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024]
Abstract
Plant Myeloblastosis (MYB) proteins function crucially roles upon variegated abiotic stresses. Nonetheless, their effects and mechanisms in rose (Rosa chinensis) are not fully clarified. In this study, we characterized the effects of rose RcMYB8 under salt and drought tolerances. For induction of the RcMYB8 expression, NaCl and drought stress treatment were adopted. Rose plants overexpressing RcMYB8 displayed enhanced tolerance to salinity and drought stress, while silencing RcMYB8 resulted in decreased tolerance, as evidenced by lowered intra-leaf electrolyte leakage and callose deposition, as well as photosynthetic sustainment under stressed conditions. Here, we further show that RcMYB8 binds similarly to the promoters of RcPR5/1 and RcP5C51 in vivo and in vitro. Inhibiting RcP5CS1 by virus-induced gene silencing led to decreased drought tolerance through the reactive oxygen species (ROS) homeostatic regulation. RcP5CS1-silenced plants showed an increase in ion leakage and reduce of proline content, together with the content of malondialdehyde (MDA) increased, lowered activities of Catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). Our study highlights the transcriptional modulator role of RcMYB8 in drought and salinity tolerances, which bridges RcPR5/1 and RcP5CS1 by promoting ROS scavenging. Besides, it is probably applicable to the rose plant engineering for enhancing their abiotic stress tolerances.
Collapse
Affiliation(s)
- Yichang Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Shuang Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Pengfei Niu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Lin Su
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xuecheng Jiao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiuyu Sui
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yaru Shi
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Boda Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Wanpei Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
6
|
Li J, Zhou X, Wang Y, Song S, Ma L, He Q, Lu M, Zhang K, Yang Y, Zhao Q, Jin W, Jiang C, Guo Y. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4. J Genet Genomics 2023; 50:960-970. [PMID: 37127254 DOI: 10.1016/j.jgg.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study, we reveal how the maize shaggy/glycogen synthase kinase 3-like kinases ZmSK3 and ZmSK4, orthologs of brassinosteroid insensitive 2 in Arabidopsis thaliana, regulate the maize SOS pathway. ZmSK3 and ZmSK4 interact with and phosphorylate ZmSOS2, a core member of the maize SOS pathway. The mutants defective in ZmSK3 or ZmSK4 are hyposensitive to salt stress, with higher salt-induced activity of ZmSOS2 than that in the wild type. Furthermore, the Ca2+ sensors ZmSOS3 and ZmSOS3-like calcium binding protein 8 (ZmSCaBP8) activate ZmSOS2 to maintain Na+/K+ homeostasis under salt stress and may participate in the regulation of ZmSOS2 by ZmSK3 and ZmSK4. These findings discover the regulation of the maize SOS pathway and provide important gene targets for breeding salt-tolerant maize.
Collapse
Affiliation(s)
- Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyan Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shu Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian He
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China; National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China.
| |
Collapse
|
7
|
Abd El Moneim D, Mansour H, Alshegaihi RM, Safhi FA, Alwutayd KM, Alshamrani R, Alamri A, Felembam W, Abuzaid AO, Magdy M. Evolutionary insights and expression dynamics of the CaNFYB transcription factor gene family in pepper ( Capsicum annuum) under salinity stress. Front Genet 2023; 14:1288453. [PMID: 38028611 PMCID: PMC10652888 DOI: 10.3389/fgene.2023.1288453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: The Capsicum annuum nuclear factor Y subunit B (CaNFYB) gene family plays a significant role in diverse biological processes, including plant responses to abiotic stressors such as salinity. Methods: In this study, we provide a comprehensive analysis of the CaNFYB gene family in pepper, encompassing their identification, structural details, evolutionary relationships, regulatory elements in promoter regions, and expression profiles under salinity stress. Results and discussion: A total of 19 CaNFYB genes were identified and subsequently characterized based on their secondary protein structures, revealing conserved domains essential for their functionality. Chromosomal distribution showed a non-random localization of these genes, suggesting potential clusters or hotspots for NFYB genes on specific chromosomes. The evolutionary analysis focused on pepper and comparison with other plant species indicated a complex tapestry of relationships with distinct evolutionary events, including gene duplication. Moreover, promoter cis-element analysis highlighted potential regulatory intricacies, with notable occurrences of light-responsive and stress-responsive binding sites. In response to salinity stress, several CaNFYB genes demonstrated significant temporal expression variations, particularly in the roots, elucidating their role in stress adaptation. Particularly CaNFYB01, CaNFYB18, and CaNFYB19, play a pivotal role in early salinity stress response, potentially through specific regulatory mechanisms elucidated by their cis-elements. Their evolutionary clustering with other Solanaceae family members suggests conserved ancestral functions vital for the family's survival under stress. This study provides foundational knowledge on the CaNFYB gene family in C. annuum, paving the way for further research to understand their functional implications in pepper plants and relative species and their potential utilization in breeding programs to enhance salinity tolerance.
Collapse
Affiliation(s)
- Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Hassan Mansour
- Department of Biological Sciences, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amnah Alamri
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wessam Felembam
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amani Omar Abuzaid
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Magdy
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Younis AA, Mansour MMF. Hydrogen sulfide priming enhanced salinity tolerance in sunflower by modulating ion hemostasis, cellular redox balance, and gene expression. BMC PLANT BIOLOGY 2023; 23:525. [PMID: 37899427 PMCID: PMC10614421 DOI: 10.1186/s12870-023-04552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The salinity threat represents an environmental challenge that drastically affects plant growth and yield. Besides salinity stress, the escalating world population will greatly influence the world's food security in the future. Therefore, searching for effective strategies to improve crop salinity resilience and sustain agricultural productivity under high salinity is a must. Seed priming is a reliable, simple, low-risk, and low-cost technique. Therefore, this work aimed to evaluate the impact of seed priming with 0.5 mM NaHS, as a donor of H2S, in mitigating salinity effects on sunflower seedlings. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then exposed to 150 mM NaCl for 7 d. RESULTS Salinity stress significantly reduced the seedling growth, biomass accumulation, K+, Ca2+, and salinity tolerance index while elevating Na+ uptake and translocation. Salinity-induced adverse effects were significantly alleviated by H2S priming. Upregulation in gene expression (HaSOS2, HaGST) under NaCl stress was further enhanced by H2S priming. Also, H2S reduced lipid peroxidation, electrolyte leakage, and H2O2 content, but elevated the antioxidant defense system. NaCl-induced levels of ascorbate, glutathione, and α tocopherol, as well as the activities of AsA-GSH cycle enzymes: ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and glutathione S-transferase, were further enhanced by H2S priming. Increased level of H2S and total thiol by NaCl was also further stimulated by H2S priming. CONCLUSION H2S priming has proved to be an efficient strategy to improve sunflower seedlings' salinity tolerance by retaining ion homeostasis, detoxifying oxidative damage, modulating gene expression involved in ion homeostasis and ROS scavenging, and boosting endogenous H2S. These findings suggested that H2S acts as a regulatory molecule activating the functional processes responsible for sunflower adaptive mechanisms and could be adopted as a crucial crop management strategy to combat saline conditions. However, it would be of great interest to conduct further studies in the natural saline field to broaden our understanding of crop adaptive mechanisms and to support our claims.
Collapse
|
9
|
Liang L, Guo L, Zhai Y, Hou Z, Wu W, Zhang X, Wu Y, Liu X, Guo S, Gao G, Liu W. Genome-wide characterization of SOS1 gene family in potato ( Solanum tuberosum) and expression analyses under salt and hormone stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1201730. [PMID: 37457336 PMCID: PMC10347410 DOI: 10.3389/fpls.2023.1201730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Salt Overly Sensitive 1 (SOS1) is one of the members of the Salt Overly Sensitive (SOS) signaling pathway and plays critical salt tolerance determinant in plants, while the characterization of the SOS1 family in potato (Solanum tuberosum) is lacking. In this study, 37 StSOS1s were identified and found to be unevenly distributed across 10 chromosomes, with most of them located on the plasma membrane. Promoter analysis revealed that the majority of these StSOS1 genes contain abundant cis-elements involved in various abiotic stress responses. Tissue specific expression showed that 21 of the 37 StSOS1s were widely expressed in various tissues or organs of the potato. Molecular interaction network analysis suggests that 25 StSOS1s may interact with other proteins involved in potassium ion transmembrane transport, response to salt stress, and cellular processes. In addition, collinearity analysis showed that 17, 8, 1 and 5 of orthologous StSOS1 genes were paired with those in tomato, pepper, tobacco, and Arabidopsis, respectively. Furthermore, RT-qPCR results revealed that the expression of StSOS1s were significant modulated by various abiotic stresses, in particular salt and abscisic acid stress. Furthermore, subcellular localization in Nicotiana benthamiana suggested that StSOS1-13 was located on the plasma membrane. These results extend the comprehensive overview of the StSOS1 gene family and set the stage for further analysis of the function of genes in SOS and hormone signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gang Gao
- *Correspondence: Gang Gao, ; Weizhong Liu,
| | | |
Collapse
|
10
|
Su L, Zhang Y, Yu S, Geng L, Lin S, Ouyang L, Jiang X. RcbHLH59-RcPRs module enhances salinity stress tolerance by balancing Na +/K + through callose deposition in rose ( Rosa chinensis). HORTICULTURE RESEARCH 2023; 10:uhac291. [PMID: 36938564 PMCID: PMC10018784 DOI: 10.1093/hr/uhac291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins play pivotal roles in plant growth, development, and stress responses. However, the molecular and functional properties of bHLHs have not been fully characterized. In this study, a novel XI subgroup of the bHLH protein gene RcbHLH59 was isolated and identified in rose (Rosa sp.). This gene was induced by salinity stress in both rose leaves and roots, and functioned as a transactivator. Accordingly, silencing RcbHLH59 affected the antioxidant system, Na +/K + balance, and photosynthetic system, thereby reducing salt tolerance, while the transient overexpression of RcbHLH59 improved salinity stress tolerance. Additionally, RcbLHLH59 was found to regulate the expression of sets of pathogenesis-related (PR) genes in RcbHLH59-silenced (TRV-RcbHLH59) and RcbHLH59-overexpressing (RcbHLH59-OE) rose plants. The RcPR4/1 and RcPR5/1 transcript levels showed opposite changes in the TRV-RcbHLH59 and RcbHLH59-OE lines, suggesting that these two genes are regulated by RcbHLH59. Further analysis revealed that RcbHLH59 binds to the promoters of RcPR4/1 and RcPR5/1, and that the silencing of RcPR4/1 or RcPR5/1 led to decreased tolerance to salinity stress. Moreover, callose degradation- and deposition-related genes were impaired in RcPR4/1- or RcPR5/1-silenced plants, which displayed a salt tolerance phenotype by balancing the Na+/K+ ratio through callose deposition. Collectively, our data highlight a new RcbLHLH59-RcPRs module that positively regulates salinity stress tolerance by balancing Na+/K+ and through callose deposition in rose plants.
Collapse
Affiliation(s)
- Lin Su
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yichang Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Shuang Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Lifang Geng
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Shang Lin
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | | | | |
Collapse
|
11
|
Ren W, Chen L, Xie ZM, Peng X. Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application. BMC PLANT BIOLOGY 2022; 22:552. [PMID: 36451095 PMCID: PMC9710056 DOI: 10.1186/s12870-022-03930-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salinization is major abiotic stress limiting cotton production. Melatonin (MT) has been implicated in salt stress tolerance in multiple crops including upland cotton. Here, we explored the transcriptomic and metabolomic response of a salt-tolerant self-bred high-yielding cotton line SDS-01, which was exogenously sprayed with four MT concentrations (50, 100, 200, and 500 μM). RESULTS Here we found that MT improves plant biomass and growth under salt stress. The combined transcriptome sequencing and metabolome profiling approach revealed that photosynthetic efficiency is improved by increasing the expressions of chlorophyll metabolism and antenna proteins in MT-treated seedlings. Additionally, linoleic acid and flavonoid biosynthesis were improved after MT treatment. The Na+/K+ homeostasis-related genes were increasingly expressed in salt-stressed seedlings treated with MT as compared to the ones experiencing only salt stress. Melatonin treatment activated a cascade of plant-hormone signal transduction and reactive oxygen scavenging genes to alleviate the detrimental effects of salt stress. The global metabolome profile revealed an increased accumulation of flavonoids, organic acids, amino acids and derivatives, saccharides, and phenolic acids in MT-treated seedlings. Interestingly, N, N'-Diferuloylputrescine a known antioxidative compound was highly accumulated after MT treatment. CONCLUSION Collectively, our study concludes that MT is a salt stress regulator in upland cotton and alleviates salt-stress effects by modulating the expressions of photosynthesis (and related pathways), flavonoid, ROS scavenging, hormone signaling, linoleic acid metabolism, and ion homeostasis-related genes.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Zong ming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang China
| | - Xiaofeng Peng
- Agricultural Science Research Institute of the third division of Xinjiang production and Construction Corps, Tumushuke, 843800 Xinjiang China
| |
Collapse
|
12
|
Weng W, Lu X, Zhou M, Gao A, Yao X, Tang Y, Wu W, Ma C, Bai Q, Xiong R, Ruan J. FtbZIP12 Positively Regulates Responses to Osmotic Stress in Tartary Buckwheat. Int J Mol Sci 2022; 23:ijms232113072. [PMID: 36361858 PMCID: PMC9658761 DOI: 10.3390/ijms232113072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
ABFs play a key role in regulating plant osmotic stress. However, in Tartary buckwheat, data on the role of ABF genes in osmotic stress remain limited and its associated mechanism in osmoregulation remain nebulous. Herein, a novel ABF family in Tartary buckwheat, FtbZIP12, was cloned and characterized. FtbZIP12 is a transcriptional activator located in the nucleus; its expression is induced by NaCl, mannitol, and abscisic acid (ABA). Atopic expression of FtbZIP12 in Arabidopsis promoted seed germination, reduced damage to primary roots, and improved the tolerance of seedlings to osmotic stress. The quantitative realtime polymerase chain reaction (RT-qPCR) results showed that the expressions of the typical genes related to stress, the SOS pathway, and the proline synthesis pathway in Arabidopsis were significantly (p < 0.05) upregulated under osmotic stress. FtbZIP12 improved the osmotic pressure resistance by reducing the damage caused by reactive oxygen species to plants and maintained plant homeostasis by upregulating the expression of genes related to stress, osmotic regulation, and ion homeostasis. This study identified a key candidate gene for understanding the mechanism underlying osmotic-stress-regulated function in Tartary buckwheat, thereby providing a theoretical basis for improving its yield and quality.
Collapse
Affiliation(s)
- Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Xiang Lu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Anjing Gao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Xin Yao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Yong Tang
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Qing Bai
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Ruiqi Xiong
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
13
|
Hosseini S, Shabani L, Sabzalian MR, Gharibi S. Foliar spray of commercial seaweed and amino acid-derived biostimulants promoted phytoremediation potential and salinity stress tolerance in halophytic grass, Puccinellia distans. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:415-429. [PMID: 35914280 DOI: 10.1080/15226514.2022.2088688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plants pretreatment with various chemicals has often been used to diminish salinity stress impact on plants. An experiment was carried out to determine the effect of foliar spray of two commercially available biostimulants (Algabon® [0.5 g/l] and Bonamid® [2 g/l]) on the growth and tolerance of halophytic grass, Pucccinellia distans under non-salinity condition (NSC) and salinity condition (SC). The greenhouse experiment was set up in a completely randomized design with three treatments repeated three times. Our results showed that biomass, leaf relative water content, chlorophyll content, K+ content, K+/Na+ ratio, and protein and N contents were all negatively affected by 300 mM NaCl. The results obtained in the present study showed the beneficial effects of the pretreatments of two biostimulants on P. distans seedlings under non-salinity stress conditions with respect to increasing plant biomass, photosynthetic pigments, K+ content, the content of proteins, and nitrogen percentage. The results suggested that foliar spray of Bonamid® could partly diminish NaCl-caused stress on P. distans seedlings, probably due to higher accumulation of shoot biomass, photosynthetic pigments, K+/Na+ ratio, protein and N contents, phytoremediation potential, as well as upregulation of Na+/H+ antiporters located in plasma membranes and vacuoles. The highest phytoremediation potential (PP) of shoots and total biomass was detected in the plants sprayed with Bonamid® by 50.8 and 42.7% respectively, relative to that in salinity-stressed control plants. Interestingly, foliar spray with two biostimulants decreased osmoprotectants and antioxidant compounds content of shoots under salinity stress conditions. Collectively, it could be concluded that a noticeable feature of pretreatment of P. distans seedlings with Algabon® and Bonamid® is the increase in growth under NSC, whereas under SC only pretreated plants with amino acid-derived biostimulant (Bonamid®) can (partly) diminish the NaCl-induced deleterious effects in P. distans seedlings through the compartmentalization of salts in vacuoles (by upregulation of Na+/H+ antiporters).
Collapse
Affiliation(s)
- Saeed Hosseini
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shima Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Zhang MX, Bai R, Nan M, Ren W, Wang CM, Shabala S, Zhang JL. Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153708. [PMID: 35504119 DOI: 10.1016/j.jplph.2022.153708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is a threat to agricultural production worldwide. Oat (Avena sativa L.) is an irreplaceable crop in areas with fragile ecological conditions. However, there is a lack of research on salt tolerance evaluation of oat germplasm resources. Therefore, the purpose of this work was to evaluate the salt tolerance of oat cultivars and investigate the mechanism of salt-tolerant oat cultivars' adaptation to salinity. Salt tolerance of 100 oat cultivars was evaluated, and then two salt-tolerant cultivars and two salt-sensitive cultivars were used to compare their physiological responses and expression patterns of Na+- and K+-transport-related genes under salinity. Principal component analysis and membership function analysis had good predictability for salt tolerance evaluation of oat and other crops. The 100 oat cultivars were clustered into three categories, with three salt tolerance levels. Under saline condition, salt-tolerant cultivars maintained higher growth rate, leaf cell membrane integrity, and osmotic adjustment capability via enhancing the activities of antioxidant enzymes and accumulating more osmotic regulators. Furthermore, salt-tolerant cultivars had stronger capability to restrict root Na + uptake through reducing AsAKT1 and AsHKT2;1 expression, exclude more Na+ from root through increasing AsSOS1 expression, compartmentalize more Na + into root vacuoles through increasing AsNHX1 and AsVATP-P1 expression, and absorb more K+ through increasing AsKUP1 expression, compared with salt-sensitive cultivars. The evaluation procedure developed in this work can be applied for screening cereal crop cultivars with higher salt tolerance, and the elucidated mechanism of oat adaptation to salinity lays a foundation for identifying more functional genes related to salt tolerance.
Collapse
Affiliation(s)
- Ming-Xu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rong Bai
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ming Nan
- Gansu Academy of Agricultural Sciences, Lanzhou, 730070, People's Republic of China
| | - Wei Ren
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, People's Republic of China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, PR China; School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia.
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
15
|
An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. BIOLOGY 2022; 11:biology11040597. [PMID: 35453796 PMCID: PMC9028878 DOI: 10.3390/biology11040597] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary This review focuses on plant growth and development harmed by abiotic stress, primarily salt stress. Salt stress raises the intracellular osmotic pressure, leading to hazardous sodium buildup. Plants react to salt stress signals by regulating ion homeostasis, activating the osmotic stress pathway, modulating plant hormone signaling, and altering cytoskeleton dynamics and cell wall composition. Understanding the processes underlying these physiological and biochemical responses to salt stress could lead to more effective agricultural crop yield measures. In this review, researchers outline recent advances in plant salt stress control. The study of plant salt tolerance processes is essential, both theoretically and practically, to improve agricultural output, produce novel salt-tolerant cultivars, and make full use of saline soil. Based on past research, this paper discusses the adverse effects of salt stress on plants, including photosynthesis suppression, ion homeostasis disturbance, and membrane peroxidation. The authors have also covered the physiological mechanisms of salt tolerance, such as the scavenging of reactive oxygen species and osmotic adjustment. This study further identifies specific salt stress-responsive mechanisms linked to physiological systems. Based on previous studies, this article reviews the current methodologies and techniques for improving plant salt tolerance. Overall, it is hoped that the above-mentioned points will impart helpful background information for future agricultural and crop plant production. Abstract Salinity is significant abiotic stress that affects the majority of agricultural, irrigated, and cultivated land. It is an issue of global importance, causing many socio-economic problems. Salt stress mainly occurs due to two factors: (1) soil type and (2) irrigation water. It is a major environmental constraint, limiting crop growth, plant productivity, and agricultural yield. Soil salinity is a major problem that considerably distorts ecological habitats in arid and semi-arid regions. Excess salts in the soil affect plant nutrient uptake and osmotic balance, leading to osmotic and ionic stress. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, the production of enzymes, compatible solutes, metabolites, and molecular or genetic networks. Different plant species have different salt overly sensitive pathways and high-affinity K+ channel transporters that maintain ion homeostasis. However, little progress has been made in developing salt-tolerant crop varieties using different breeding approaches. This review highlights the interlinking of plant morpho-physiological, molecular, biochemical, and genetic approaches to produce salt-tolerant plant species. Most of the research emphasizes the significance of plant growth-promoting rhizobacteria in protecting plants from biotic and abiotic stressors. Plant growth, survival, and yield can be stabilized by utilizing this knowledge using different breeding and agronomical techniques. This information marks existing research areas and future gaps that require more attention to reveal new salt tolerance determinants in plants—in the future, creating genetically modified plants could help increase crop growth and the toleration of saline environments.
Collapse
|
16
|
Xie Q, Zhou Y, Jiang X. Structure, Function, and Regulation of the Plasma Membrane Na +/H + Antiporter Salt Overly Sensitive 1 in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866265. [PMID: 35432437 PMCID: PMC9009148 DOI: 10.3389/fpls.2022.866265] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 05/24/2023]
Abstract
Physiological studies have confirmed that export of Na+ to improve salt tolerance in plants is regulated by the combined activities of a complex transport system. In the Na+ transport system, the Na+/H+ antiporter salt overly sensitive 1 (SOS1) is the main protein that functions to excrete Na+ out of plant cells. In this paper, we review the structure and function of the Na+/H+ antiporter and the physiological process of Na+ transport in SOS signaling pathway, and discuss the regulation of SOS1 during phosphorylation activation by protein kinase and the balance mechanism of inhibiting SOS1 antiporter at molecular and protein levels. In addition, we carried out phylogenetic tree analysis of SOS1 proteins reported so far in plants, which implied the specificity of salt tolerance mechanism from model plants to higher crops under salt stress. Finally, the high complexity of the regulatory network of adaptation to salt tolerance, and the feasibility of coping strategies in the process of genetic improvement of salt tolerance quality of higher crops were reviewed.
Collapse
Affiliation(s)
- Qing Xie
- National Innovation Center for Technology of Saline-Alkaline Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| | - Xingyu Jiang
- National Innovation Center for Technology of Saline-Alkaline Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
17
|
He Z, Wang Z, Nie X, Qu M, Zhao H, Ji X, Wang Y. UNFERTILIZED EMBRYO SAC 12 phosphorylation plays a crucial role in conferring salt tolerance. PLANT PHYSIOLOGY 2022; 188:1385-1401. [PMID: 34904673 PMCID: PMC8825338 DOI: 10.1093/plphys/kiab549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) UNFERTILIZED EMBRYO SAC 12 (AtUNE12) belongs to the basic helix-loop-helix DNA-binding superfamily of proteins. However, its function is not well known. Here, we found that AtUNE12 plays an important role in mediating salt tolerance. AtUNE12 is a transcriptional activator located in the nucleus whose expression is induced by NaCl, mannitol, and abscisic acid. In addition to binding to the G-box "CACGTG", AtUNE12 also binds to the low temperature responsive element 15 (LTRE15) "CCGAC". Furthermore, the serine residue at position 108 of AtUNE12 is phosphorylated during the salt stress response, enabling AtUNE12 to trigger gene expression by binding to G-box and/or LTRE15 motifs. Phosphorylated AtUNE12 regulates the expression of the genes involved in ion transport leading to reduced Na+ accumulation and K+ loss. At the same time, phosphorylation of AtUNE12 also induces the expression of AtMYB61 to decrease stomatal aperture, leading to a reduced transpiration rate. Overall, AtUNE12 serves as a transcriptional activator that is induced and phosphorylated upon salt stress, and the induction and phosphorylation of AtUNE12 in turn activate the salt-overly-sensitive pathway and decrease the stomatal aperture, enabling improved salt tolerance.
Collapse
Affiliation(s)
- Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xianguang Nie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ming Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Huimin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
18
|
Kumar G, Basu S, Singla-Pareek SL, Pareek A. Unraveling the contribution of OsSOS2 in conferring salinity and drought tolerance in a high-yielding rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13638. [PMID: 35092312 DOI: 10.1111/ppl.13638] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 05/24/2023]
Abstract
Abiotic stresses are emerging as a potential threat to sustainable agriculture worldwide. Soil salinity and drought will be the major limiting factors for rice productivity in years to come. The Salt Overly Sensitive (SOS) pathway plays a key role in salinity tolerance by maintaining the cellular ion homeostasis, with SOS2, a S/T kinase, being a vital component. The present study investigated the role of the OsSOS2, a SOS2 homolog from rice, in improving salinity and drought tolerance. Transgenic plants with either overexpression (OE) or knockdown (KD) of OsSOS2 were raised in one of the high-yielding cultivars of rice-IR64. Using a combined approach based on physiological, biochemical, anatomical, microscopic, molecular, and agronomic assessment, the evidence presented in this study advocates the role of OsSOS2 in improving salinity and drought tolerance in rice. The OE plants were found to have favorable ion and redox homeostasis when grown in the presence of salinity, while the KD plants showed the reverse pattern. Several key stress-responsive genes were found to work in an orchestrated manner to contribute to this phenotype. Notably, the OE plants showed tolerance to stress at both the seedling and the reproductive stages, addressing the two most sensitive stages of the plant. Keeping in mind the importance of developing crops plants with tolerance to multiple stresses, the present study established the potential of OsSOS2 for biotechnological applications to improve salinity and drought stress tolerance in diverse cultivars of rice.
Collapse
Affiliation(s)
- Gautam Kumar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sahana Basu
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
19
|
Vignesh P, Mahadevaiah C, Parimalan R, Valarmathi R, Dharshini S, Nisha S, Suresha GS, Swathi S, Mahadeva Swamy HK, Sreenivasa V, Mohanraj K, Hemaprabha G, Bakshi R, Appunu C. Comparative de novo transcriptome analysis identifies salinity stress responsive genes and metabolic pathways in sugarcane and its wild relative Erianthus arundinaceus [Retzius] Jeswiet. Sci Rep 2021; 11:24514. [PMID: 34972826 PMCID: PMC8720094 DOI: 10.1038/s41598-021-03735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
Erianthus arundinaceus [Retzius] Jeswiet, a wild relative of sugarcane has a high biomass production potential and a reservoir of many genes for superior agronomic traits and tolerance to biotic and abiotic stresses. A comparative physiological, anatomical and root transcriptome analysis were carried out to identify the salt-responsive genes and metabolic pathways associated with salt-tolerant E. arundinaceus genotype IND99-907 and salinity-sensitive sugarcane genotype Co 97010. IND99-907 recorded growth of young leaves, higher proline content, higher relative water content, intact root anatomical structures and lower Na+/K+, Ca2+/K+ and Mg2+/K+ ratio as compared to the sugarcane genotype Co 97010. We have generated four de novo transcriptome assemblies between stressed and control root samples of IND99-907 and Co 97010. A total of 649 and 501 differentially expressed genes (FDR<0.01) were identified from the stressed and control libraries of IND99-907 and Co 97010 respectively. Genes and pathways related to early stress-responsive signal transduction, hormone signalling, cytoskeleton organization, cellular membrane stabilization, plasma membrane-bound calcium and proton transport, sodium extrusion, secondary metabolite biosynthesis, cellular transporters related to plasma membrane-bound trafficking, nucleobase transporter, clathrin-mediated endocytosis were highly enriched in IND99-907. Whereas in Co 97010, genes related to late stress-responsive signal transduction, electron transport system, senescence, protein degradation and programmed cell death, transport-related genes associated with cellular respiration and mitochondrial respiratory chain, vesicular trafficking, nitrate transporter and fewer secondary metabolite biosynthetic genes were highly enriched. A total of 27 pathways, 24 biological processes, three molecular functions and one cellular component were significantly enriched (FDR≤ 0.05) in IND99-907 as compared to 20 pathways, two biological processes without any significant molecular function and cellular components in Co 97010, indicates the unique and distinct expression pattern of genes and metabolic pathways in both genotypes. The genomic resources developed from this study is useful for sugarcane crop improvement through development of genic SSR markers and genetic engineering approaches.
Collapse
Affiliation(s)
- P Vignesh
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - C Mahadevaiah
- ICAR-Sugarcane Breeding Institute, Coimbatore, India.
| | - R Parimalan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - R Valarmathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - S Dharshini
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Singh Nisha
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - G S Suresha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - S Swathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | - V Sreenivasa
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - K Mohanraj
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - G Hemaprabha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Ram Bakshi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - C Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India.
| |
Collapse
|
20
|
Roy S, Chakraborty AP, Chakraborty R. Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. PHYSIOLOGIA PLANTARUM 2021; 173:1657-1681. [PMID: 34549441 DOI: 10.1111/ppl.13570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity severely affects plant growth and development and imparts inevitable losses to crop productivity. Increasing the concentration of salts in the vicinity of plant roots has severe consequences at the morphological, biochemical, and molecular levels. These include loss of chlorophyll, decrease in photosynthetic rate, reduction in cell division, ROS generation, inactivation of antioxidative enzymes, alterations in phytohormone biosynthesis and signaling, and so forth. The association of microorganisms, viz. plant growth-promoting rhizobacteria, endophytes, and mycorrhiza, with plant roots constituting the root microbiome can confer a greater degree of salinity tolerance in addition to their inherent ability to promote growth and induce defense mechanisms. The mechanisms involved in induced stress tolerance bestowed by these microorganisms involve the modulation of phytohormone biosynthesis and signaling pathways (including indole acetic acid, gibberellic acid, brassinosteroids, abscisic acid, and jasmonic acid), accumulation of osmoprotectants (proline, glycine betaine, and sugar alcohols), and regulation of ion transporters (SOS1, NHX, HKT1). Apart from this, salt-tolerant microorganisms are known to induce the expression of salt-responsive genes via the action of several transcription factors, as well as by posttranscriptional and posttranslational modifications. Moreover, the potential of these salt-tolerant microflora can be employed for sustainably improving crop performance in saline environments. Therefore, this review will briefly focus on the key responses of plants under salinity stress and elucidate the mechanisms employed by the salt-tolerant microorganisms in improving plant tolerance under saline environments.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Darjeeling, West Bengal, India
| |
Collapse
|
21
|
Ramasamy M, Damaj MB, Vargas-Bautista C, Mora V, Liu J, Padilla CS, Irigoyen S, Saini T, Sahoo N, DaSilva JA, Mandadi KK. A Sugarcane G-Protein-Coupled Receptor, ShGPCR1, Confers Tolerance to Multiple Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:745891. [PMID: 35295863 PMCID: PMC8919185 DOI: 10.3389/fpls.2021.745891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Sugarcane (Saccharum spp.) is a prominent source of sugar and serves as bioenergy/biomass feedstock globally. Multiple biotic and abiotic stresses, including drought, salinity, and cold, adversely affect sugarcane yield. G-protein-coupled receptors (GPCRs) are components of G-protein-mediated signaling affecting plant growth, development, and stress responses. Here, we identified a GPCR-like protein (ShGPCR1) from sugarcane and energy cane (Saccharum spp. hybrids) and characterized its function in conferring tolerance to multiple abiotic stresses. ShGPCR1 protein sequence contained nine predicted transmembrane (TM) domains connected by four extracellular and four intracellular loops, which could interact with various ligands and heterotrimeric G proteins in the cells. ShGPCR1 sequence displayed other signature features of a GPCR, such as a putative guanidine triphosphate (GTP)-binding domain, as well as multiple myristoylation and protein phosphorylation sites, presumably important for its biochemical function. Expression of ShGPCR1 was upregulated by drought, salinity, and cold stresses. Subcellular imaging and calcium (Ca2+) measurements revealed that ShGPCR1 predominantly localized to the plasma membrane and enhanced intracellular Ca2+ levels in response to GTP, respectively. Furthermore, constitutive overexpression of ShGPCR1 in sugarcane conferred tolerance to the three stressors. The stress-tolerance phenotype of the transgenic lines corresponded with activation of multiple drought-, salinity-, and cold-stress marker genes, such as Saccharum spp. LATE EMBRYOGENESIS ABUNDANT, DEHYDRIN, DROUGHT RESPONSIVE 4, GALACTINOL SYNTHASE, ETHYLENE RESPONSIVE FACTOR 3, SALT OVERLY SENSITIVE 1, VACUOLAR Na+/H+ ANTIPORTER 1, NAM/ATAF1/2/CUC2, COLD RESPONSIVE FACTOR 2, and ALCOHOL DEHYDROGENASE 3. We suggest that ShGPCR1 plays a key role in conferring tolerance to multiple abiotic stresses, and the engineered lines may be useful to enhance sugarcane production in marginal environments with fewer resources.
Collapse
Affiliation(s)
- Manikandan Ramasamy
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B. Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | | | - Victoria Mora
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Jiaxing Liu
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Carmen S. Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Tripti Saini
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Jorge A. DaSilva
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
22
|
Mahadevaiah C, Hapase P, Sreenivasa V, Hapase R, Swamy HKM, Anilkumar C, Mohanraj K, Hemaprabha G, Ram B. Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane. Sci Rep 2021; 11:18649. [PMID: 34545116 PMCID: PMC8452706 DOI: 10.1038/s41598-021-98002-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Sugarcane is a trans-seasonal long-duration crop and tillering phase (60-150 days) is the most sensitive phase for moisture stress, causing significant reduction in biomass accumulation. The study focussed to assess the Genotype × Environment Interaction (GEI) for tillering phase moisture stress and to identify the stable genotypes in sugarcane. The study dealt with 14 drought tolerant genotypes and two standards (Co 86032 and CoM 0265) which were evaluated in two plant and one ratoon trials at four locations in Maharashtra, India. The moisture stress was imposed for 60 days from 90 to 150 days after planting and corresponded to tillering phase by withholding the irrigation. The AMMI ANOVA showed significant GEI for cane and CCS yield accounting 18.33 and 19.45 percent of variability respectively. Drought and genotype main effects were highly significant accounting 49.08 and 32.59 percent variability for cane yield and, 52.45 and 28.10 percent variability for CCS yield respectively. The first two interactive principal component (IPCA) biplots of AMMI showed diverse nature of all four environments and the Discriminative vs Mean biplots of Genotype + genotype × environment interaction (GGE) model showed that 'Pune' as the highly discriminating environment. The genotype ranking biplots of GGE showed that Co 85019 was the most stable genotype followed by Co 98017. Similar results were also observed in Yield vs IPCA1 biplot of AMMI, which revealed Co 85019 and Co 98017 as high yielding stable varieties. Yield related environmental maximum (YREM) showed thirteen and nine percent loss due to crossover interactions in Co 85019 for cane yield and CCS yield respectively. The multi-environment BLUP and genotype stability index (GSI) has reaffirmed that Co 85019 as a drought proof and stable genotype with high yield under tillering phase drought stress. The results suggested using Co 85019 for cultivation in drought prone regions and the usefulness of the methodology for identifying more such sugarcane varieties for the benefit of resource poor famers in drought affected regions.
Collapse
Affiliation(s)
- C. Mahadevaiah
- grid.459991.90000 0004 0505 3259Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Prakash Hapase
- grid.32056.320000 0001 2190 9326Vasantdada Sugar Institute, Pune, India
| | - V. Sreenivasa
- grid.459991.90000 0004 0505 3259Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Ramesh Hapase
- grid.32056.320000 0001 2190 9326Vasantdada Sugar Institute, Pune, India
| | - H. K. Mahadeva Swamy
- grid.459991.90000 0004 0505 3259Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - C. Anilkumar
- grid.418371.80000 0001 2183 1039ICAR-National Rice Research Institute, Cuttack, India
| | - K. Mohanraj
- grid.459991.90000 0004 0505 3259Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - G. Hemaprabha
- grid.459991.90000 0004 0505 3259Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Bakshi Ram
- grid.459991.90000 0004 0505 3259Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|