1
|
Cavanagh A, Matthews M. The heat is on: scaling improvements in photosynthetic thermal tolerance from the leaf to canopy to predict crop yields in a changing climate. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240235. [PMID: 40439311 PMCID: PMC12121381 DOI: 10.1098/rstb.2024.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 06/02/2025] Open
Abstract
Crop production must increase to sustain a growing global population, and this challenge is compounded by increased growing season temperatures and extreme heat events that are already causing significant yield losses in staple crops. Therefore, there is an urgent need to develop strategies to adapt crops to withstand the impacts of a warmer climate. Temperature-sensitive vegetative processes fundamentally related to yield, like photosynthesis, will be impacted by warming throughout the growing season, thus strategies to enhance their resilience hold promise to future-proof crops for a warmer world. Here, we summarize three major strategies to enhance C3 photosynthesis above the thermal optimum: enhanced rubisco activation, modified photorespiration and increased rates of ribulose bisphosphate regeneration. We highlight recent experimental evidence demonstrating the efficacy of these strategies, and then use a mechanistic modelling approach to predict the benefit of these engineering strategies on leaf-level carbon assimilation and soybean yield at elevated temperatures. Our approach highlights that these three engineering targets, particularly when combined, can enhance photosynthetic rates and yield under both ambient and elevated temperatures. By targeting multiple aspects of photosynthetic metabolism, we can develop crops that are better equipped to withstand the challenges of a warming climate and contribute to future food security.This article is part of the theme issue 'Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the 'Resilience Revolution'?'.
Collapse
Affiliation(s)
- Amanda Cavanagh
- School of Life Science, University of Essex - Colchester Campus, Colchester, UK
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Megan Matthews
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Civil and Environmental Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Li C, Du X, Liu C. Enhancing crop yields to ensure food security by optimizing photosynthesis. J Genet Genomics 2025:S1673-8527(25)00017-7. [PMID: 39800260 DOI: 10.1016/j.jgg.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security. This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency. There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods, and this increase is accompanied by improved photosynthesis. We explore various aspects of the light reactions designed to enhance crop yield, including light harvest efficiency through smart canopy systems, expanding the absorbed light spectrum to include far-red light, optimizing non-photochemical quenching, and accelerating electron transport flux. At the same time, we investigate carbon reactions that can enhance crop yield, such as manipulating Rubisco activity, improving the Calvin-Benson-Bassham (CBB) cycle, introducing CO2 concentrating mechanisms (CCMs) in C3 plants, and optimizing carbon allocation. These strategies could significantly impact crop yield enhancement and help bridge the yield gap.
Collapse
Affiliation(s)
- Chunrong Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejia Du
- University of Houston, 5000 Gulf Fwy, Houston, TX 77023, USA
| | - Cuimin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Qiu T, Wei S, Fang K, Zhang M, Li Y, Feng Y, Cheng Y, Zhang S, Tian J, Gao A, Yang Q, Yang M, Bhadauria V, Li J, Peng YL, Zhao W. The atypical Dof transcriptional factor OsDes1 contributes to stay-green, grain yield, and disease resistance in rice. SCIENCE ADVANCES 2024; 10:eadp0345. [PMID: 39178266 PMCID: PMC11343033 DOI: 10.1126/sciadv.adp0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 08/25/2024]
Abstract
The regulation of leaf senescence and disease resistance plays a crucial role in determining rice grain yield and quality, which are important to meet the ever-increasing food demands of the world. Here, we identified an atypical Dof transcriptional factor OsDes1 that contributes to the stay-green phenotype, grain yield, and disease resistance in rice. The expression level of OsDes1 is positively associated with stay-green in natural variations of japonica rice, suggesting that OsDes1 would be alternatively used in breeding programs. Mechanistically, OsDes1 targets the promoter of the Rieske FeS protein gene OsPetC to activate its expression and interacts with OsPetC to protect against its degradation, thus promoting stay-green and ultimately improving the grain yield. OsDes1 also binds to the promoter region of defense-related genes, such as OsPR1b, and activates their expression, leading to enhanced disease resistance. These findings offer a potential strategy for breeding rice to enhance grain yield and disease resistance.
Collapse
Affiliation(s)
- Tiancheng Qiu
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Shuang Wei
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Kexing Fang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Man Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Yixin Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Yayan Feng
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Yapu Cheng
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Sanwei Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Jiagen Tian
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Aiai Gao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Qingya Yang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Mengni Yang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Vijai Bhadauria
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People’s Republic of China
| | - You-Liang Peng
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Wensheng Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
- Sanya Institute of China Agricultural University, Sanya 572025, People’s Republic of China
| |
Collapse
|
5
|
Santin A, Collura F, Singh G, Morlino MS, Bizzotto E, Bellan A, Gupte AP, Favaro L, Campanaro S, Treu L, Morosinotto T. Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:101. [PMID: 39014484 PMCID: PMC11253406 DOI: 10.1186/s13068-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation. RESULTS Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances. CONCLUSIONS Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.
Collapse
Grants
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- Ministero dell’Istruzione, dell’Università e della Ricerca
- Università degli Studi di Padova
Collapse
Affiliation(s)
- Anna Santin
- Department of Biology, University of Padova, 35131, Padua, Italy.
| | - Flavio Collura
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Garima Singh
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Edoardo Bizzotto
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Laura Treu
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | |
Collapse
|
6
|
Bulut M, Nunes-Nesi A, Fernie AR, Alseekh S. Characterization of PetM cytochrome b6f subunit 7 domain-containing protein in tomato. HORTICULTURE RESEARCH 2023; 10:uhad224. [PMID: 38094587 PMCID: PMC10716634 DOI: 10.1093/hr/uhad224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2024]
Abstract
In recent years, multiple advances have been made in understanding the photosynthetic machinery in model organisms. Knowledge transfer to horticultural important fruit crops is challenging and time-consuming due to restrictions in gene editing tools and prolonged life cycles. Here, we characterize a gene encoding a PetM domain-containing protein in tomato. The CRISPR/Cas9 knockout lines of the PetM showed impairment in the chloroplastic electron transport rate (ETR), reduced CO2 assimilation, and reduction of carotenoids and chlorophylls (Chl) under several light conditions. Further, growth-condition-dependent elevation or repression of Chl a/b ratios and de-epoxidation states were identified, underlining possible impairment compensation mechanisms. However, under low light and glasshouse conditions, there were basal levels in CO2 assimilation and ETR, indicating a potential role of the PetM domain in stabilizing the cytochrome b6f complex (Cb6f) under higher light irradiance and increasing its quantum efficiency. This suggests a potential evolutionary role in which this domain might stabilize the site of the Cb6f regulating ratios of cyclic and linear electron transport and its potential importance during the conquest of terrestrial ecosystems during which plants were exposed to higher irradiance. Finally, the results are discussed with regard to metabolism and their implication to photosynthesis from an agronomic perspective.
Collapse
Affiliation(s)
- Mustafa Bulut
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900 MG, Brazil
| | - Alisdair R Fernie
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Plant Metabolomics, The Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Plant Metabolomics, The Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Wang Y, Liang Q, Zhang C, Huang H, He H, Wang M, Li M, Huang Z, Tang Y, Chen Q, Miao H, Li H, Zhang F, Wang Q, Sun B. Sequencing and Analysis of Complete Chloroplast Genomes Provide Insight into the Evolution and Phylogeny of Chinese Kale ( Brassica oleracea var. alboglabra). Int J Mol Sci 2023; 24:10287. [PMID: 37373434 DOI: 10.3390/ijms241210287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chinese kale is a widely cultivated plant in the genus Brassica in the family Brassicaceae. The origin of Brassica has been studied extensively, but the origin of Chinese kale remains unclear. In contrast to Brassica oleracea, which originated in the Mediterranean region, Chinese kale originated in southern China. The chloroplast genome is often used for phylogenetic analysis because of its high conservatism. Fifteen pairs of universal primers were used to amplify the chloroplast genomes of white-flower Chinese kale (Brassica oleracea var. alboglabra cv. Sijicutiao (SJCT)) and yellow-flower Chinese kale (Brassica oleracea var. alboglabra cv. Fuzhouhuanghua (FZHH)) via PCR. The lengths of the chloroplast genomes were 153,365 bp (SJCT) and 153,420 bp (FZHH) and both contained 87 protein-coding genes and eight rRNA genes. There were 36 tRNA genes in SJCT and 35 tRNA genes in FZHH. The chloroplast genomes of both Chinese kale varieties, along with eight other Brassicaceae, were analyzed. Simple sequence repeats, long repeats, and variable regions of DNA barcodes were identified. An analysis of inverted repeat boundaries, relative synonymous codon usage, and synteny revealed high similarity among the ten species, albeit the slight differences that were observed. The Ka/Ks ratios and phylogenetic analysis suggest that Chinese kale is a variant of B. oleracea. The phylogenetic tree shows that both Chinese kale varieties and B. oleracea var. oleracea were clustered in a single group. The results of this study suggest that white and yellow flower Chinese kale comprise a monophyletic group and that their differences in flower color arose late in the process of artificial cultivation. Our results also provide data that will aid future research on genetics, evolution, and germplasm resources of Brassicaceae.
Collapse
Affiliation(s)
- Yilin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiannan Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chenlu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanhuan Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyu Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huiying Miao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Ermakova M, Woodford R, Taylor Z, Furbank RT, Belide S, von Caemmerer S. Faster induction of photosynthesis increases biomass and grain yield in glasshouse-grown transgenic Sorghum bicolor overexpressing Rieske FeS. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1206-1216. [PMID: 36789455 DOI: 10.1111/pbi.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Sorghum is one of the most important crops providing food and feed in many of the world's harsher environments. Sorghum utilizes the C4 pathway of photosynthesis in which a biochemical carbon-concentrating mechanism results in high CO2 assimilation rates. Overexpressing the Rieske FeS subunit of the Cytochrome b6 f complex was previously shown to increase the rate of photosynthetic electron transport and stimulate CO2 assimilation in the model C4 plant Setaria viridis. To test whether productivity of C4 crops could be improved by Rieske overexpression, we created transgenic Sorghum bicolor Tx430 plants with increased Rieske content. The transgenic plants showed no marked changes in abundances of other photosynthetic proteins or chlorophyll content. The steady-state rates of electron transport and CO2 assimilation did not differ between the plants with increased Rieske abundance and control plants, suggesting that Cytochrome b6 f is not the only factor limiting electron transport in sorghum at high light and high CO2 . However, faster responses of non-photochemical quenching as well as an elevated quantum yield of Photosystem II and an increased CO2 assimilation rate were observed from the plants overexpressing Rieske during the photosynthetic induction, a process of activation of photosynthesis upon the dark-light transition. As a consequence, sorghum with increased Rieske content produced more biomass and grain when grown in glasshouse conditions. Our results indicate that increasing Rieske content has potential to boost productivity of sorghum and other C4 crops by improving the efficiency of light utilization and conversion to biomass through the faster induction of photosynthesis.
Collapse
Affiliation(s)
- Maria Ermakova
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, ACT, Australia
- School of Biological Sciences, Monash University, Melbourne, Vic, Australia
| | - Russell Woodford
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Zachary Taylor
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, ACT, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Brandenburg, Germany
| | - Robert T Furbank
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | | | - Susanne von Caemmerer
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
9
|
Zhang S, Zou B, Cao P, Su X, Xie F, Pan X, Li M. Structural insights into photosynthetic cyclic electron transport. MOLECULAR PLANT 2023; 16:187-205. [PMID: 36540023 DOI: 10.1016/j.molp.2022.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
During photosynthesis, light energy is utilized to drive sophisticated biochemical chains of electron transfers, converting solar energy into chemical energy that feeds most life on earth. Cyclic electron transfer/flow (CET/CEF) plays an essential role in efficient photosynthesis, as it balances the ATP/NADPH ratio required in various regulatory and metabolic pathways. Photosystem I, cytochrome b6f, and NADH dehydrogenase (NDH) are large multisubunit protein complexes embedded in the thylakoid membrane of the chloroplast and key players in NDH-dependent CEF pathway. Furthermore, small mobile electron carriers serve as shuttles for electrons between these membrane protein complexes. Efficient electron transfer requires transient interactions between these electron donors and acceptors. Structural biology has been a powerful tool to advance our knowledge of this important biological process. A number of structures of the membrane-embedded complexes, soluble electron carrier proteins, and transient complexes composed of both have now been determined. These structural data reveal detailed interacting patterns of these electron donor-acceptor pairs, thus allowing us to visualize the different parts of the electron transfer process. This review summarizes the current state of structural knowledge of three membrane complexes and their interaction patterns with mobile electron carrier proteins.
Collapse
Affiliation(s)
- Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|